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Abstract: An amplitude-aided multi-target tracking (MTT) exploits amplitude as well as spatial features for MTT. Compared to
MTT using a spatial feature only, it can maintain its performance even in densely cluttered environment because more accurate
association is achieved by using both features for likelihood evaluation between tracks and measurements. Therefore, the goal
of this study is to review the state-of-the-art amplitude-aided MTT methods and compare each other extensively. For a fair
comparison, a unified MTT framework is developed, and various methods are implemented and compared based on the same
framework. On the challenging visual MTT datasets, the implemented methods are evaluated for several aspects such as
accuracy, speed, sensitivity, and stability. Moreover, this study presents a summary of the extensive evaluation and guideline to
select an appropriate method for amplitude-aided tracking.

1 Introduction
Multi-target tracking (MTT) is to find states (positions, velocities,
or sizes) of multiple targets with unknown object quantities and
behaviours with given a set of sensor measurements. It plays an
important role in many research areas such as radar-based aircraft
tracking, sonar-based sea-animal tracking, and image-based object
tracking. In most cases, the measurement origin is also unknown
since a sensor usually receives mixed signals reflected from both
targets and random clutter. Therefore, to distinguish the returns of
the actual targets from those of background clutter and other
interference, a detection algorithm such as a constant false alarm
rate algorithm [1] is applied, and then a refined measurement that
contains spatial information such as range, bearing, and Doppler
velocity is generated. To date, however, false positives and missing
detections are unavoidable since the performance of detectors is
still incomplete. Thus, to successfully solve the MTT problem, a
data association process is required, which would be able to
correctly associate measurements with the corresponding tracks.

For the association between tracks and measurements, many
association methods have been developed during the last decades.
Simple greedy association methods such as the nearest
neighbourhood [2] and the strongest neighbour [3] association can
be performed rapidly, but they do not properly consider the cases in
which multiple measurements originating from multiple targets are
scattered. In order to find optimal solutions for a joint track-to-
measurement assignment problem through single-frame and multi-
frame searches, joint probabilistic data association [2] and multiple
hypothesis tracking (MHT) [4] have been proposed. However, they
incur large computational costs as the number of possible joint
assignments combinatorially increases due to the number of tracks
and measurements. In an attempt to alleviate the association
complexity, linear multi-target integrated probabilistic data
association (LMIPDA) [5] has been developed.

In addition, sequential Monte Carlo (SMC) methods for MTT
have been developed. They can be divided into an association-
based tracking [6–9] and association free tracking [10–12]. The
first one decomposes a complex MTT problem into data
association and state estimation problems based on a divide-and-
conquer approach. Therefore, a data association is key to
approximate a posterior distribution for each target. On the other
hand, the latter one estimates states of all targets in a Bayesian
framework without data association. Thus, each sample is a

hypothesis on the number of targets present and the states of those
targets. Although the methods for MTT are applied, association
failures occur often in practical scenarios when targets are closely
spaced or clutter is densely distributed in the target vicinity. In
these situations, exploiting only spatial information is not sufficient
for discriminating between target and clutter measurements.

In practical sensors such as a radar and a sonar, amplitude
feature as well as spatial feature such as range, bearing, and
Doppler velocity can be measured. In addition, the signal
amplitude from a target is usually stronger than that from false
alarms (or clutters). Therefore, we can exploit the amplitude
feature for identifying between targets and clutters. Based on this
finding, the authors in [13–19] utilise the amplitude information for
the better association. In these studies, the motion likelihood and
also amplitude likelihood are used for associating tracks and
measurements. For improving single-target tracking in a cluttered
environment, the authors in [13, 15] present the probabilistic data
association filter including amplitude feature, and the highest
probabilistic data association [13], respectively. To extend it for
MTT, amplitude has been incorporated into MHT [16] and Viterbi
data association [14]. In addition, for tracking multiple targets with
different signal-to-noise ratios (SNRs), amplitude was also
incorporated into a framework of finite set statistics [17]. Recently,
the authors in [18, 19] developed SNR estimation methods with
amplitude and presented LMIPDA with amplitude information
(LMIPDA-AI) for more robust association.

However, it is still challenging to determine which method is
the most appropriate for each application since a complete survey
for amplitude-aided MTT methods is not conducted. Although
Ehrman and Blair [20] present some comparisons of MTT methods
using target amplitude, the discussed methods can be applicable
only with the assumption that target SNRs are known and fixed
during tracking. However, in many practical applications, the target
SNR information may not be available beforehand. In addition,
even though knowledge of the (initial) SNR is known beforehand,
the target SNR should be updated consistently during tracking
since it fluctuates due to the following reasons: (i) the received
signal of the target is faded by propagation and attenuation through
a medium [15]; (ii) the returns of most targets are composed of the
sum of reflected rays from individual scattering points [17, 21];
and (iii) the aspect angle of the target is changed by the target
motion [22].
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In this paper, we present MTT methods with amplitude which
can be operated under unknown target SNR. We first introduce a
SNR marginalisation method [17] which marginalises an amplitude
likelihood over a range of possible SNRs. We then introduce two
SNR estimation methods for estimating target SNRs with
amplitude measurements. The first one estimates the values using
the SMC [18] method. The other method estimates them based on a
maximum posterior approach (MAP) [19]. Since these methods
were implemented for different MTT frameworks, we implement
each method based on a unified MTT framework and generate
several MTT systems by combining different amplitude methods.
In addition, we implement MTT system which is known SNRs
during tracking to consider an ideal case. To investigate the effects
of using both amplitude and spatial measurements for MTT, we
also implement MTT systems with one of both measurements. For
evaluating tracking systems, we use the stand metric, optimal
subpattern assignment (OSPA) [23] and visual surveillance
benchmark datasets for MTT. The continuations of this paper can
be summarised as follows:

• A concise survey of modern MTT methods using amplitude
under an known and unknown SNR environment.

• A unified framework based on SMC to implement various
amplitude-aided tracking methods.

• Extensive evaluation of various methods for the several aspects
on the challenging visual MTT datasets.

• A practical guide to select a suitable method for amplitude-
added MTT.

2 Problem definition
A non-linear discrete-time dynamic motion is used to model the
behaviour of a target τ as follows:

xk
τ = f k(xk − 1

τ ) + vk − 1, k = 1, 2, … (1)

where xk
τ ∈ ℝ4 denotes states of a target τ at time instant k

composed of positions (x1, k
τ , x2, k

τ ) and velocities (x3, k
τ , x4, k

τ ) along with
x and y coordinates, respectively. f k is a non-linear function of the
state xk − 1 and vk − 1 ∼ N(0, Qk) is white Gaussian system noise. The
initial state x0

τ is assumed to be Gaussian N(m0
τ, P0) with the

covariance P0, where m0 = E(x0
τ) and P0 = cov{x0

τ, x0
τ}.

In general, the measurement set obtained at one scan is
composed of many measurements originated from multiple targets
and clutter [2, 21]. Let us denote a set of measurements at scan k as
ℤk = zi, k i = 1

mk , where the measurement vector
zi, k = ri, k, θi, k, ai, k

T = [yi, k, ai, k]T is composed of range ri, k, bearing
bi, k, and amplitude ai, k elements. As in probabilistic data
association filter (PDAF) [2], the gating technique is used to reduce
matching combinations between tracks and measurements. Using
the gating technique, mk

τ validated measurement in the gate of the
track τ is determined by

ℤk
τ = zi, k

τ : vi, k
τ T Sk

τ −1
vi, k

τ ≤ γ , i = 1, …, mk
τ, (2)

where γ is a gate threshold and mk
τ is the number of measurements

in the gate of the track τ; vi, k
τ = yi, k

τ − ȳk |k − 1
τ , is a zero-mean

Gaussian residual with covariance Sk
τ. Given the predicted sample

measurements yk |k − 1
n, τ  with weights wk − 1

n, τ  from (37), the predicted
measurement ȳk |k − 1

τ  and the innovation covariance Sk
τ are

empirically calculated as

ȳk |k − 1
τ = ∑

n = 1

N
wk − 1

n, τ yk |k − 1
n, τ , yk |k − 1

n, τ = hk xk |k − 1
n, τ

Sk
τ = ∑

n = 1

N
wk − 1

n, τ yk |k − 1
n, τ − ȳk |k − 1

τ yk |k − 1
n, τ − ȳk |k − 1

τ T .
(3)

Given the gated measurements, amplitude thresholding is exploited
to filter out false alarms with the threshold DT because the
amplitude from a target is usually stronger than false alarms [17].

Furthermore, a target-originated measurement zi, k
τ  is modelled

by a non-linear measurement model as

yi, k
τ = hk xk

τ + wk =
(x1, k

τ )2 + (x2, k
τ )2

tan−1 x2, k
τ

x1, k
τ

+
wr, k

wθ, k
, (4)

where the range noise wr, k ∼ N(0, σr
2) and the bearing noise

wθ, k ∼ N(0, σθ
2) are uncorrelated Gaussian noise sequence. Here, it

is assumed that the spatial yi, k
τ  and amplitude ai, k

τ  measurements are
independent of each other.

3 Modelling of amplitude likelihood
Probabilistic amplitude models for a target and false alarm (or
clutter) are presented. These models are modelled with amplitude
and target SNR. To model these amplitude likelihood functions
under unknown target SNR environment, a marginalised amplitude
likelihood function within a certain SNR range is described. Then,
SNR estimation methods, which can infer SNR with measured
amplitude at each scan, are discussed.

3.1 Target and clutter amplitude likelihood models

Let us assume that amplitude is the output of a bandpass matched
filter that has an envelope detector attached. In this case, the
probability density of the amplitude a follows a Rayleigh
distribution [For clarity, the set, matrix, vector, and scalar are
denoted by blackboard bold font, upper case boldface, boldface,
and standard italic types, e.g. A, A, a, a], as described in [15, 21].
The amplitude probability density of false detections (or clutter)
can be expressed as

pc(a) = a
σ2 ⋅ exp −a2

2σ2 , a ≥ 0, (5)

where σ2 is the variance (or power) of the in-phase and quadrature
components (xs, ys) [15] of the narrow band noise coming out of the
matched filter, where each component is assumed to be Gaussian
but independent of each other. Here, xs, ys ∼ N(0, σ2) and the
amplitude a is defined as a = xs

2 + ys
2. Note that the amplitude

density function is the representation of the power (σ2) of each
component. However, as discussed in [24], in the narrow band
filter, the amplitude density function of the noise is modelled with
the average (or total) noise power σnoise

2  rather than the power σ2 of
the component since the receiver bandwidth-to-centre frequency
ratio is usually small. Thus, it can be reformulated with average
noise power σnoise

2 , where σnoise
2 = 2σ2:

p0(a) = 2a
σnoise

2 ⋅ exp −a2

σnoise
2 , a ≥ 0, (6)

where the background noise is normalised as in [15, 17]. This
means that the variance of the noise (6) is σnoise

2 = 1, and the
expected noise power N0 is unity as

N0 = E a2 = ∫
0

∞
a2p0(a) da = 1. (7)

Let us define the expected (or mean) SNR [The SNR is represented
in log scale: SNR(dB) = 10log10(d)] d = S/N0, where S is the
signal power and d can be treated as the expected target signal
power because N0 = 1. In addition, a slow Rayleigh fading
amplitude-modulated narrowband signal is considered in the
presence of narrowband noise. In this case, the signal returned
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from the target is expressed as the sum of the transmitted signal
and the narrow band noise. Also, as described above, the noise has
the normal distribution with zero mean and unit variance (i.e.
σnoise

2 = 1). Therefore, the amplitude density function of a target
follows Rayleigh distribution with the variance 1 + d (i.e. the SNR)

p1(a, d) = 2a
1 + d ⋅ exp −a2

1 + d . (8)

However, to evaluate the signal power S from the target amplitude
distribution (8), the expected target SNR d is needed to estimate
because

S = E a2 = ∫
0

∞
a2p1(a, d)da . (9)

Let us next consider the case in which the amplitude a exceeds a
detection threshold DT, i.e. a ≥ DT . Then, the amplitude density of
the target becomes

p1
DT(a, d) = 1

PD
p1(a, d) = 2a

1 + d ⋅ exp DT2 − a2

1 + d , a ≥ DT , (10)

where the target detection probability PD used for normalisation is
calculated as

PD = ∫
DT

∞
p1(a, d)da = exp −DT2

(1 + d) . (11)

Otherwise the amplitude probability density of false alarms is
expressed from (6)

p0
DT(a) = 1

PFA
p0(a) = 2a ⋅ exp DT2 − a2 , a ≥ DT , (12)

where the clutter detection probability PFA is given as

PFA = ∫
DT

∞
p0(a)da = exp −DT2 . (13)

When the target SNR d is known, the amplitude likelihoods of both
the target and clutter can then be computed as

Target: ga
DT(a |d) = p1

DT(a, d), (14)

Clutter: ca
DT = p0

DT(a) . (15)

To exploit the amplitude in the general case without the assumption
of the known SNR, a target SNR marginalisation method is
presented in Section 3.2. Then, SNR estimation methods are
provided to find d during tracking in Section 3.3. Once the
likelihood functions ga

DT(a |d) and ca
DT are evaluated, the amplitude

feature can be used to discriminate different targets and/or clutter.
In Section 4, a unified MTT framework is presented in order to
incorporate and evaluate the presented SNR marginalisation and
estimation methods.

3.2 Marginalisation of target amplitude likelihood

In an attempt to evaluate the target amplitude likelihood (14), Clark
et al. [17] present the SNR marginalisation method. Let denote the
density of the target SNR d defined within the boundary d1, d2  as
p(d). Then, the likelihood and detection probability can be defined
as

ga(a) := ∫
d1

d2
p(δ)ga(a |δ) dδ

PD(τ) := ∫
d1

d2
p(δ)PD(δ) dδ .

(16)

To design the prior p(d), an uninformative prior is applied using
the Fisher information. In Bayesian statistics, the uninformative
prior is proportional to the square root of the Fisher information:
p(d) ∝ I(d). Let us consider amplitude samples, {ai}i = 1

n , which
are drawn independent identically distributed from the target
likelihood ga

DT(a |d) (14). Then, it can be represented as

ga a1, a2, …, an, d = ∏
i = 1

n
ga(ai, d) (17)

According to the Fisher information theory [25], the variance of
any unbiased estimator var(d^) is bounded by the inverse of I(d)

var(d^) ≥ 1
I(d) , I(d) = Ed

∂(ln(∏i = 1
n ga(ai |d)))

∂d

2

(18)

Since the target likelihood ga
DT(a |d) is a product of Rayleigh

distributions from (17), the Fisher information I(d) is

I(d) = n
(1 + d)2 (19)

Then, p(d) for the single object likelihood with one measurement is
represented with I(d) (19)

p(d) ∝ 1
(1 + d) (20)

where p(d) is normalised for the region [d1, d2].
This prior provides a uniform distribution in the dB domain,

which can be shown as follows: suppose that u(ξ) is distributed
uniformly in dB domain. Then, the integration of u(ξ) over a range
of dB values [dB1, dB2] and conversion of it into d domain can be
represented as

∫
dB1

dB2
u(ξ) = ∫

ϕ−1(dB1)

ϕ−1(dB2)
u(ϕ(δ))ϕ′(δ) dδ ∝ ∫

ϕ−1(dB1)

ϕ−1(dB2)
ϕ′(δ) dδ (21)

where ϕ(d) = 10log10(1 + d) is the function which change d into dB
values. Therefore, p(d) = ϕ′(d) ∝ 1/(1 + d) provides the required
function in the d domain. In addition, by the prior p(d) the analytic
solution for the likelihood function ga (16) marginalised over d can
be derived as

ga(a) = 2 exp −a2/(2(1 + d2)) − exp −a2/(2(1 + d1))
a ln(1 + d2) − ln(1 + d1) . (22)

3.3 Unknown SNR estimation

In this section, SNR estimation methods with amplitude
measurements are discussed. The prior to describe the behaviour of
a target SNR is first introduced and then estimation methods using
SMC [18] and MAP [19] methods are provided.

3.3.1 SNR prior model: To estimate the target SNR d, the prior
knowledge of d is required. Therefore, the following two cases can
be considered for modelling the prior p(d):

• Case 1: no previous knowledge of the SNR is available.
• Case 2: an initial (or previously estimated) SNR is provided, but

it should be updated due to its random fluctuation.
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In the first case, let us consider that the SNR can be any value
within any boundary [d1, d2], and then the prior p(d) can be
modelled using the uniform distribution as follows:

p d =
1

d2 − d1
, d1 ≤ d ≤ d2,

0, otherwise .
(23)

In the second case, let us consider that the SNR is randomly
fluctuated in the vicinity of the initial (or previously estimated)
SNR d

^
k − 1
τ

. The prior p(d) can be modelled by using the Gaussian

random walk with the mean d
^
k − 1
τ

 and variance σd
2 as follows:

p(d) = N d; d
^
k − 1
τ , σd

2 , d
^
k
τ ≥ 0. (24)

Once the motion of d is modelled with both prior (23) and (24), the
unknown target SNR can be updated with the SMC and MAP
methods discussed in the next section.

3.3.2 SMC-based SNR estimation: Suppose that unknown
target SNR sequence dk can be modelled based on the prior (24) as

dk + 1
τ = dk

τ + φk, k = 1, 2, … (25)

where φk is white Gaussian noise sequence represented by
φk ∼ N 0, σφ

2 .
The unknown SNR dk

τ of the target τ can be estimated
recursively with the predication and update procedure of SMC as

Predict: p(dk
τ |a1:k − 1

τ ) = ∫ p dk
τ |dk − 1

τ p(dk − 1
τ |a1:k − 1

τ )ddk − 1
τ ,

Update: p(dk
τ |a1:k

τ ) ∝ p dk
τ |ak

τ p(dk
τ |a1:k − 1

τ ) .
(26)

where the prior model of a target SNR (24) can be applied for
prediction. The sample weight wk

n, τ for the sample dk
n, τ is evaluated

with the amplitude likelihood function (14). Then, dk
τ can be

estimated with N samples and weights as

d
^
k
τ = ∑

i = 1

N
wk

n, τdk
n, τ, ∑

i = 1

N
wk = 1, k = 1, 2, … (27)

3.3.3 MAP-based SNR estimation: To estimate an unknown
SNR more accurately, one can use several amplitude
measurements. In other words, rather than inferring the target SNR
with an instant amplitude measurement ak

τ of target τ at scan k, it
can be estimated with a set of amplitude measurements stacked
during Δ scans.

Let us denote the stacked amplitude measurements from time
k − Δ to time k as ak − Δ:k

τ . The MAP problem of finding an optimal
SNR with respect to the collection of amplitudes ak − Δ:k

τ  can be
modelled by

d
^
k
τ = argmax

d
∏

aτ ∈ ak − Δ:k
τ

p aτ, d , d ≥ 0,

= argmax
d

∏
aτ ∈ ak − Δ:k

τ
p aτ |d p(d),

= argmax
d

∑
aτ ∈ ak − Δ:k

τ
log p(aτ |d) + log p(d) ,

(28)

where the first likelihood term p(aτ |d) is given by (14).
To design the prior term p(d), let us consider both cases

mentioned in Section 3.3.1. In the first case, the prior p(d) is given
by (23), and then the MAP problem can be reformulated by
substituting the prior of (28) with the distribution (23) as

d
^
k
τ = argmax

d
∑

aτ ∈ ak − Δ:k
τ

log p(aτ |d) + log(c), c = 1
d2 − d1

, (29)

As c is constant, the MAP problem (29) can be transformed into
the maximum likelihood estimation

d
^
k
τ = argmax

d
∑

aτ ∈ ak − Δ:k
τ

log p(aτ |d) . (30)

In the second case, the prior p(d) using the Gaussian random walk
with the mean d

^
k − 1
τ

 and variance σd
2 is represented by (24). In the

similarity manner, by substituting the prior of (28) with (24), the
following objective function can be derived:

d
^
k
τ = argmax

d
∑

aτ ∈ ak − Δ:k
τ

log p(aτ |d) + log(c),

c = N d; d
^
k − 1
τ , σd

2 .
(31)

Optimising both objective functions (30) and (31) can be regarded
as non-linear least-squares problems. To solve these problems, Bae
et al. [19] use the Levenberg–Marquardt method [26].

4 MTT framework
In this section, we present a robust MTT system consisting of data
association and track state update parts.

4.1 Data association with spatial and amplitude feature

We briefly discuss LMIPDA-AI and refer to [18] for further
details. Let us consider the following two association events:

• χ0, k
τ : None of the measurements are associated with track τ

• χi, k
τ : The measurement zi, k

τ  is associated with track τ.

The posterior association probabilities for both events χ0, k
τ  and

χi, k
τ  can be evaluated by

βi, k
τ =

P χ0, k
τ , χk

τ |ℤk, Mk

P χk
τ |ℤk, Mk

= 1 − PD
τ PG

τ

1 − Ψk
τ , i = 0,

P χi, k
τ , χk

τ |ℤk, Mk

P χk
τ |ℤk, Mk

= PD
τ PG

τ

1 − Ψk
τ ⋅ Λi, k

τ

Φi, k
τ , i = 1, …, mk

τ,
(32)

where PD
τ  and PG

τ  are the target detection and gate probability,
respectively.

Then, using the spatial and amplitude features, the likelihood
model Λi, k

τ  can be acquired based on the assumption of independent
spatial measurement yi, k

τ  and amplitude measurement ai, k
τ .

Consequently, Λi, k
τ  is derived such that

Λi, k
τ ≡ p zi, k

τ | χk
τ, ℤk − 1 = p yi, k

τ | χk
τ, Y k − 1

× p ai, k
τ | χk

τ, Ak − 1 = Λi, k
p, τ ⋅ Λi, k

a, τ,
(33)

where the spatial likelihood function Λi, k
p, τ and the amplitude

likelihood function Λi, k
a, τ become

Λi, k
p, τ = N vi, k

τ , Sk
τ

= |2πSk
τ |−1/2 exp − 1

2(vi, k
τ )T(Sk

τ)−1
vi, k

τ ,

Λi, k
a, τ = ga

DT(ai, k
τ |d^k

τ),

(34)
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Note that the amplitude likelihood Λi, k
a, τ can be modelled in different

ways. From the marginalised distribution (22), Λi, k
a, τ can be

represented within a certain interval [d1, d2]. In addition, one can
infer (10) by estimating the target SNR d

^
k
τ
 from (27), (30) or (31).

The innovation covariance Sk
τ and the residual vi, k

τ  of the track are

computed using (3). Ψk
τ = PD

τ PG
τ ⋅ 1 − ∑i = 1

mk
τ

Λi, k
τ /Φi, k

τ  is obtained

using the target likelihood (33) and scatterer models. Φi, k
τ  is

probability that measurement zi, k
τ  is originated from scatterer [18].

The track existence probability is predicted and updated as

Predict:P χk
τ |ℤk − 1 = α11P χk − 1

τ |ℤk − 1

+α21 1 − P(χk − 1
τ |ℤk − 1) ,

Update:P χk
τ |ℤk =

1 − Ψk
τ ⋅ P χk

τ |ℤk − 1

1 − Ψk
τ ⋅ P χk

τ |ℤk − 1 ,

(35)

where transition probabilities α11 ≡ P(χk
τ | χk − 1

τ ) and
α21 ≡ P(χk

τ | χ~k − 1
τ ) are set to 0.98 and 0.02.

4.2 Particle filtering for MTT

In particle filtering for MTT, the main issue is how to estimate
posterior distributions of multiple targets’ states with inaccurate
detections. To handle this difficulty, the authors in [10, 11] present
joint multitarget probability density for estimating target states and
cardinality simultaneously. However, the computational complexity
increases exponentially when the number of particles increases. To
mitigate the curse-of-dimensionality problem, the authors in [6–9]
solve the data association and state estimation problems separately.
Based the Rao-Blackwellisation method, Särkkä et al. [7] used
particle filtering and Kalman filtering for data association and state
estimation, respectively. Ekmanm [6] presented data association
method by combining probabilistic data association and nearest
neighbour techniques. In [8], a game-theoretic framework is
developed for deterministic association. Sample-based joint
probabilistic data association [9] is provided for applying a
ensemble square root filter for MTT. The reader is kindly referred
to [27, 28] for more details of particle filtering for MTT.

In this study, we also present an association-based SMC method
by using the data association with spatial and amplitude feature.
Here, the states of each target can be modelled by linear or non-
linear dynamic models.

Basically, the Monte Carlo filter (or particle filter) [29, 30]
performs the following two-step recursion procedure:

Predict: p(xk
τ | z1:k − 1

τ ) = ∫ p xk
τ | xk − 1

τ p(xk − 1
τ | z1:k − 1

τ ) dxk − 1
τ ,

Update: p(xk
τ | z1:k

τ ) ∝ p zk
τ | xk

τ p(xk
τ | z1:k − 1

τ ) .
(36)

The recursion requires a motion model p xk
τ | xk − 1

τ  and a likelihood
model p zk

τ | xk
τ . To deal with complicated distributions which are

analytically intractable, the particle filter approximates the two
steps using a set of weighted samples xk

n, τ, wk
n, τ

n = 1
N , where N is

the number of particles.
When measurements z1:k

τ  of the track τ up to scan k are
provided, all states of the target up to scan k (i.e. trajectory) x1:k

τ  can
be updated well by (36). In most MTT scenarios, however, it is not
easy to identify origin of measurements because the detection
responses are often unreliable (e.g. false positive, missing and
inaccurate detections) and the responses of other targets are
present.

To update the states of a track with unreliable measurements,
we need to select a measurement zk

τ corresponding to the track τ in

the set ℤk. In this study, we select zk
τ among ℤk

τ = zi, k
τ

i = 1
ma, k

τ

according to the posterior association probability βi, k
τ  (32). More

specifically, when the number of particles is N = 100, 100
measurements are generated by random selection in the set ℤk

τ

according to βi, k
τ . This procedure is rather similar to resampling in

particle filtering: a measurement with a high value βi, k
τ  is more

likely to be selected in the set. By incorporating this measurement
selection step, we extend the two-step recursion (36) of the
conventional particle filtering to a three-step procedure as follows:

Predict: p(xk
τ | z1:k − 1

τ ) = ∫ p xk
τ | xk − 1

τ p(xk − 1
τ | z1:k − 1

τ ) dxk − 1
τ ,

Select: zk
τ ∼ βi, k

τ , zk
τ ∈ zi, k

τ
i = 1
ma, k

τ
,

Update: p(xk
τ | z1:k

τ ) ∝ p zk
τ | xk

τ p(xk
τ | z1:k − 1

τ ) .

(37)

where, for sample prediction, we exploit the dynamic system
model (1). The sample weight is evaluated with the selected
measurement using the likelihood model (4)

p xk
τ | xk − 1

n, τ = N xk
τ; xk |k − 1

n, τ , Qk , xk |k − 1
n, τ = fk(xk − 1

n, τ ),
p zk

τ | xk
n, τ = N zk

τ; zk |k − 1
n, τ , Rk , zk |k − 1

n, τ = hk(xk |k − 1
n, τ ) .

(38)

By incorporating the above recursion (37), we present an overall
algorithm to implement the amplitude-aided MTT methods
discussed in Algorithm 1 (see Fig. 1). 

5 Experimental results
In this section, we compare different MTT systems on the
challenging visual surveillance datasets.

5.1 Implementation

Based on Algorithm 1 (Fig. 1), we have implemented and
compared the MTT systems (TR1–TR6) using spatial and
amplitude measurements in a different way. For this comparison,
based on the same MTT framework using LMIPDA(-AI) and
particle filtering mentioned in Section 4, we have implemented the
following MTT systems by combining different methods discussed
in Section 3:

• (TR1) with spatial measurement;
• (TR2) with amplitude measurement based on strongest

neighbour data association [3];
• (TR3) with spatial and amplitude measurement based on the

known SNR [15];
• (TR4) with spatial and amplitude measurement based on the

marginalisation method [17];
• (TR5) with spatial and amplitude measurement based on the

SMC method [18];
• (TR6) with spatial and amplitude measurement based on the

MAP method [19].

Here, the system (TR1) only uses spatial measurement (i.e.
range and angle) without using amplitude. (TR2) associates a
measurement with the strongest amplitude in each track gate as
done in [3]. Systems (TR3)–(TR6) use both spatial and amplitude
measurements. (TR3) exploits known SNR d and evaluate the
amplitude likelihood (14) with known d. On the other hand, in
(TR4)–(TR6), the SNR d is assumed to be unknown. (TR4) models
the marginalised likelihood function (22) with marginalised SNRs
over a range [dB1, dB2]. dB1 = 0 (dB) and dB2 = 30 (dB) is set to
determine the prior of SNR used for (20) and (23). For (TR5) and
(TR6), we estimate SNRs d

^
k
τ
 for each target. (TR5) estimates d

^
k
τ

using the SMC method (27). We generate 59 samples uniformly
from 1 to 30 dB with interval 0.5 dB. In (TR6), we estimate it
using the objective function (31) and the variance σd

2 is set to 5. We
set Δ = 5 when solving (31).
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5.2 Evaluation metric

As a performance measure, the OSPA metric [23] is used. Given
the true and estimated sets composed of states of multiple targets,
we measure the localisation distance and cardinality distance. The
localisation distance evaluates the state similarities between
matched pairs in the true and estimated sets. On the other hand, the
cardinality distance evaluates how well the number of existing
tracks matches the number of true targets. As an overall
performance measure, the OSPA distance representing the total
error is calculated by summing both the localisation and cardinality
distances. For all the distance metrics, a smaller distance indicates
better results.

In the OSPA metric, the cut-off parameter is set to c = 100,
which determines the relative weighting of penalties assigned to
the cardinality and localisation errors. The order parameter then is
set to p = 1 which determines the sensitivity of the metric to
outliers.

5.3 Visual multi-object tracking dataset

To compare systems (TR1–TR6) in real MTT environment, we use
the publicly available VS-PETS 2009 benchmark dataset [31]. In
the dataset, PETS S2.L1 and PETS S2.L2 sequences for MTT
evaluation are exploited. PETS S2.L1 and S2.L2 sequences consist
of 795 and 436 frames and the resolution of each image is
768(pixels) × 576(pixels). About 23 and 74 objects exist for PETS

S2.L1 and S2.L2, respectively. As shown in Figs. 2a and 3a, the
trajectories of multiple objects are complicated. In particular, PETS
S2.L2 sequence is very challenging because many objects are
moving and interacting with each other. We allocate each object to
an initial SNR within (5 dB, 20 dB), and the object SNRs fluctuate
at each scan according to the Gaussian distribution (24) with the
variance σd = 10. 

5.4 Detection

We first obtain detection results using a HOG detector [32] which
was pre-trained for detecting pedestrians. Measurements of objects
are assumed to detect with PD = 0.95 and some detections for the
objects are removed according to PD. From each detection, spatial
locations (x and y positions) and its sizes (width and height) are
obtained. For each object SNR at frame k, amplitude measurements
are generated according to Rayleigh distribution (9).

For each sequence, we generate more clutters with various
clutter density: λ = 6.78 × 10−5, λ = 1.13 × 10−4, and
λ = 1.58 × 10−4 (measurements/frame/pixel2) for PETS L1, and
λ = 4.52 × 10−5, λ = 9.04 × 10−5 and λ = 1.36 × 10−4

(measurements/frame/pixel2) for PETS L2. As a result, from 20 to
70 clutters are produced randomly at each frame.

5.5 Tracking parameters

For a fair comparison, all the systems (TR1)–(TR6) use the same
detections and tracking parameters. As a proposal density used for
predicting particles, we use the prior of sample motion
p xk

τ | xk − 1
n, τ = N xk

τ; f xk − 1
n, τ , Qk

τ , where f is in a general non-linear
transfer function, and the noise covariance is set to

Qk = diag[0.05(pixel)2, 5(pixel/frame)2, 0.05(pixel)2, 5
(pixel/frame)2]T

The thresholds of gate and amplitude are set to γ = 15 and
DT = 0.7.

For initialising new tracks, a two-step track initialisation
method [33] is used. The initial states of a track are computed by
associated measurements during few recent scans. The initial
covariance is

Pk = diag[1(pixel)2, 25(pixel/frame)2, 1(pixel)2, 25
(pixel/frame)2]T

in consideration of maximum distances and velocities of moving
objects in an image.

5.6 Accuracy comparison

5.6.1 PETS S2.L1 sequence: In Fig. 2, we compare the MTT
systems (TR1)–(TR6). Fig. 2a shows the true trajectories of all the
objects in this sequence. In Fig. 2b, we show the OSPA total,
cardinality, and location error rates for the systems. The OSPA total
errors of systems (TR1) and (TR2) using spatial or amplitude
information only are much higher that those of (TR3)–(TR6) using
both measurements. As clutter density λ increases, OSPA errors of
(TR1) and (TR2) significantly increases. The main reason is that
the clutter measurements in the vicinity of objects and/or with high
amplitude are generated more as λ become higher. As a result,
more clutter measurements are likely to associate with tracks in
(TR1) and (TR2). However, we found that (TR3)–(TR6) can still
maintain the good performance even for high λ since both spatial
and amplitude likelihood Λi, k

p, τ and Λi, k
a, τ are applied for track-to-

measurement association as in (32). Therefore, to associate a
clutter measurement with a track in (TR3)–(TR6), the clutter has
high spatial and amplitude likelihood at the same time.

As expected, (TR3) with known SNR shows the better OSPA
performance than (TR4)–(TR6) without the knowledge of SNR. In
addition, (TR5) and (TR6) which estimate the object SNRs show
the better rates than (TR4) using the marginalisation. This implies

Fig. 1  Algorithm 1: the overall algorithm for MTT systems (TR1)–(TR6)
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that the amplitude likelihood function can be computed more
accurately by using the estimated SNRs. Moreover, (TR5) and
(TR6) show the almost similar performance.

5.6.2 PETS S2.L2 sequence:  Fig. 3 shows the tracking results
of the (TR1)–(TR6) on the PEST S2.L2 sequence. As mentioned,
this sequence is very challenging due to complex motions between

Fig. 2  Comparisons with different MTT systems (TR1–TR6) for the PETS S2.L1 over 795 frames
(a) True trajectories, (b) Comparison of different methods in terms of OSPA metrics, (c) PETS-L1 tracking results using the TR6. From left to right: frame 107, frame 128, frame
146, frame 149
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many objects. Fig. 3b compares the performance of different
systems. We also confirm that exploiting both spatial and
amplitude measurements improve MTT performance when
comparing (TR1) and (TR2) with (TR3)–(TR6). Even though
(TR3) with known SNR shows the best rates for all clutter
densities, (TR4)–(TR6) are comparable with the (TR3). Here,
(TR5) and (TR6) based on SNR estimation methods show the
better performance than (TR3). Since many objects exist, the
cardinality errors of the (TR1) and (TR2) systems increase greatly
as λ increases. However, the cardinality errors for (TR3)–(TR6) are
not increased much for the large λ. The low cardinality error means

that the number of generated tracks is close to the number of true
objects.

5.6.3 Qualitative evaluation: For more comparison between the
marginalisation and SNR estimation methods, we demonstrate the
tracking results of (TR4) and (TR6) on the PETS S2.L1 sequence
in Fig. 4. As can be seen, some track fragments and ID switch
occur when using (TR4). On the other hand, (TR6) maintains the
identities of objects correctly under occlusions. We provide the
more tracking results of (TR6) in Figs. 2c and 3c. Many objects are
successfully tracked even in complex scenes. 

Fig. 3  Comparisons with different MTT systems (TR1–TR6) for the PETS S2.L2 over 436 frames
(a) True trajectories, (b) Comparison of different methods in terms of OSPA metrics, (c) PETS-L2 tracking results using the TR6. From left to right: frame 373, frame 403, frame
405, frame 416
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5.7 Speed comparison

Table 1 compares the speed of the systems (TR1)–(TR6). As
described in Algorithm 1 (Fig. 1), the computational time (second/
frame) of the main steps in each system is also computed. As
shown, the particle filtering step in all the systems is most
computationally expensive. (TR6) requires the more time in step 1
due to the target SNR estimation. Interestingly, the algorithm
complexity of (TR1) and (TR2) is lower than (TR4)–(TR6)
because (TR4)–(TR6) contain the additional process of
marginalising an amplitude function or estimating a target SNR as
shown in Algorithm 1 (Fig. 1). However, they show the lower
speed than (TR4)–(TR6). The main reason is that many false tracks
are generated by the inaccurate association in (TR1) and (TR2). 

5.8 Sensitivity and stability analysis

In this section, we present sensitive and stability analysis of MTT
systems (TR1)–(TR6). To this end, on PETS S2. L1, we evaluate
the variations of OSPA total errors (or distance) by changing
important parameters, which might affect the overall MTT
performance, at 795 frames based on 200 Monte Carlo runs. In this
evaluation, λ = 1.58 × 10−4 is used to evaluate the sensitivity and
stability of each system under heavy cluttered environment.

5.8.1 Amplitude threshold: In amplitude-aided tracking, the
amplitude threshold DT can affect the overall MTT performance.
The reason is that DT can be exploited for filtering out false alarm
based on the assumption the amplitude from a target is stronger
than false alarms. Moreover, DT is used for amplitude likelihood
computation for the target (10) and clutter (12).

To show the effect of DT, we change the DT with [0:1:10] for
all the systems (TR1)–(TR6). We then evaluate the OSPA total
errors and tracking speed for each system in Figs. 5a and b. For all
the systems, the tracking complexity is reduced by using high DT,
but their performance can be degraded because target originated
measurements can be filtered out. Except for (TR3), (TR6)
achieves the lowest OSPA score of 18.44 for DT = 1. Remarkably,
we found that the most systems (TR3)–(TR6) by using amplitude
likelihoods produce the high performance when applying the low

DT. Therefore, we recommend that exploiting the low DT between
0 and 1 is suitable for amplitude-aided MTT systems in order to
obtain good tracking performance. 

In addition, for DT ≥ 2, (TR2), which associates a
measurement with the highest amplitude to a track, shows the
almost similar performance with other systems (TR4–TR6). When
averaging the OSPA results for all DT, (TR5) shows the better rates
except for (TR3), but the performance difference between (TR5)
and (TR4)/(TR6) is ∼1.5%. The average speed of (TR4) and (TR5)
is higher rather than ones of other systems. When DT is low, the
speeds of (TR4) and (TR5) are much faster than those of (TR1) and
(TR2) by reducing false track generation as described in Section
5.7.

5.8.2 Number of samples in a particle filter: All the systems
(TR1)–(TR6) use the particle filter to approximate the posterior
distribution of hidden states with a set of weighted samples. One
key parameter of a particle filter is the sample number N. As shown
in [34, 35], exploiting a large number of samples improves the
particle diversity. This indicates that the overall tracking accuracy
can be enhanced because the posterior distribution can be
approximated better. However, using many samples increase the
computational complexity. Therefore, many studies [36, 37] have
been conducted to determine the number of samples to trade the
accuracy and speed properly. In this paper, we have also
investigated the stability and sensitivity of each system towards the
number of samples.

Fig. 5c shows the OSPA errors for different N. When N = 10,
the OSPA errors of all the systems are peaked. However, we found
that their performance does not increase considerably after N = 25.
This means that N is not a sensitive parameter for the MTT
systems. In addition, they reach the stable performance when N
exceeds to 25. We can also infer that posterior distributions of
target states are affected more by the selected measurement rather
than the predicted samples. Therefore, we found that improving
data association between tracks and measurements is important to
capture a desirable posterior distribution in particle-filter-based
MTT.

Fig. 4  For PETS S2.L1 sequence, comparison results of (TR4) and (TR6). The selected frames are #18, #26, #39, #44
(a) Tracking results using (TR4) on PETS S2.L1, (b) Tracking results using (TR5) on PETS S2.L1

 
Table 1 Computational complexity of the main algorithms for TR1–TR6. The scores are computed with DT = 1 and
λ = 1.58 × 10−4 on PETS S2.L1 sequence

(TR1)-w/o Amp. (TR2)-SND (TR3)-Known (TR4)-Marg. (TR5)-SMC (TR6)-MAP
(steps 1 and 2) gating and likelihood 1.55 × 10−2 9.27 × 10−3 5.18 × 10−3 4.99 × 10−3 5.12 × 10−3 1.56 × 10−2

(step 3) data association 8.51 × 10−4 4.60 × 10−4 2.84 × 10−4 2.66 × 10−4 2.55 × 10−4 2.36 × 10−4

(step 4) particle filtering 3.36 × 10−2 3.07 × 10−2 2.76 × 10−2 2.85 × 10−2 2.78 × 10−2 2.38 × 10−2

overall complexity 4.99 × 10−2 4.04 × 10−2 3.30 × 10−2 3.38 × 10−2 3.32 × 10−2 3.96 × 10−2
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5.8.3 Transition probability: Fig. 5d shows the variation of OSPA
errors for systems (TR1)–(TR6) according to the transition
probability α11 used for the prediction of a track existence
probability (35). As α11 decreases, the predicted track existence
probability also decreases. Using the low transition probability α11
decreases the tracking performance as shown. All the systems
show the best rate when α11 = 0.98. These results mean that the
performance of the systems is rather sensitive to the transition
probability, but the stability can be maintained easily by using the
high α11.

5.8.4 System stability: We found that all the systems maintain the
stability since they do not diverge during the 200 Monte Carlo
runs. However, for a more comparison, in Table 2, we provide the
averaged OSPA rates and standard deviation for the
hyperparameters. The small standard deviation indicates that a
system is not sensitive to the parameter, and keeps the high
stability for the variation of the parameter. Even though (TR1)
shows the lowest standard deviation among them, it is not difficult
to conclude that (TR1) achieves the highest stability since its OSPA
average score is too low. In overall, (TR3)–(TR6) show the higher
stability than (TR1) and (TR2) since they show low OSPA error
and standard deviation. This comparison implies that using both
features also improves the system stability. 

5.9 Summary

This section provides the summary of the experimental results and
a guideline to select amplitude-aided MTT methods.

We have compared the performance of systems (TR1)–(TR6) in
terms of several aspects. We first compare the tracking accuracy of
the systems in Figs. 2 and 3. By comparing the mean accuracy
(OSPA total error) of (TR1)–(TR6) in both sequences, we rank the
systems in terms of the accuracy as follows:

TR3 > TR6 > TR5 > TR4 > TR1 > TR2 (39)

We then compare the speed of the systems in Table 1, and the
systems can be ranked for the speed as follows:

TR3 > TR5 > TR4 > TR6 > TR2 > TR1 (40)

In Fig. 5, the sensitivity and stability are evaluated by changing the
values of the detection threshold (DT), sample number (N), and
transition probability (α11). From the results, we can order the
parameters to affect the system performance as follows:

DT > α11 > N (41)

In Table 2, we show the overall performance of each system for
each parameter. By summing the scores of the average OSPA rate
and standard deviation, we can order the system stability as
follows:

Fig. 5  For PETS S2.L1 sequence, comparison of different MTT methods (TR1–TR6) by changing DT, N, and α11

(a) OSPA total error for DT, (b) Tracking speed, (c) OSPA total error for N, (d) OSPA total error for α11

 
Table 2 On the PETS S2.L1, the averaged OSPA scores and standard deviation of (TR1)–(TR6) are computed for the
hyperparameters DT, N, and α11

(TR1)-w/o Amp. (TR2)-SND (TR3)-Known (TR4)-Marg. (TR5)-SMC (TR6)-MAP
detection threshold (DT) 68.48/0.77 39.93/16.64 32.17/13.81 33.67/12.98 32.36/13.00 33.19/13.42
number of samples (N) 71.58/2.98 60.55/2.39 22.32/2.25 23.86/1.91 23.47/1.98 24.29/2.19
transition probability (α11) 74.11/2.61 59.57/4.01 27.73/4.14 28.98/3.42 28.48/3.40 29.68/3.84
average 71.39/2.12 53.35/7.68 27.41/6.73 28.84/6.10 28.10/6.13 29.05/6.48
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TR3 > TR5 > TR4 > TR6 > TR2 > TR1 (42)

To sum up, we can present the following key guidelines:

• Using both spatial and amplitude features improves the accuracy
and also the speed of a MTT system.

• Using both features reduces the sensitivity to the
hyperparameters and improves the stability under parameter
change.

• When inferring the amplitude likelihood function, estimating a
target SNR is more accurate than marginalising the function.

• Except for (TR3) using the known SNR, the system (TR5)
produces the best trade-off value between the accuracy and
speed.

• A track-to-measurement association is key when approximating
the distribution of multiple targets’ states using particle filtering.

6 Conclusion
This study has presented the review of amplitude-aided MTT
methods. For implementing the methods in a SMC framework, we
have designed a unified MTT framework based on amplitude-aided
data association. The implemented MTT methods are compared
extensively for the several aspects such as accuracy, speed,
sensitivity, and stability on challenging visual MTT datasets. From
the experimental comparisons, we have provided a practical guide
to select a suitable method when developing amplitude-aided
tracking systems in real applications.
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