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Robust Online Multiobject Tracking With
Data Association and Track Management
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Abstract— In this paper, we consider a multiobject tracking
problem in complex scenes. Unlike batch tracking systems using
detections of the entire sequence, we propose a novel online
multiobject tracking system in order to build tracks sequentially
using online provided detections. To track objects robustly even
under frequent occlusions, the proposed system consists of three
main parts: 1) visual tracking with a novel data association
with a track existence probability by associating online detections
with the corresponding tracks under partial occlusions; 2) track
management to associate terminated tracks for linking tracks
fragmented by long-term occlusions; and 3) online model learning
to generate discriminative appearance models for successful asso-
ciations in other two parts. Experimental results using challeng-
ing public data sets show the obvious performance improvement
of the proposed system, compared with other state-of-the-art
tracking systems. Furthermore, extensive performance analysis
of the three main parts demonstrates effects and usefulness of
the each component for multiobject tracking.

Index Terms— Online multi-object tracking, tracking-by-
detection, data association, track management, online learning,
track existence probability, particle filtering, affinity model,
surveillance system.

I. INTRODUCTION

MULTI-OBJECT tracking is to find the locations and
sizes of multiple objects and conserve their IDs in

image sequences. It is important for many applications such as
a surveillance system, human machine interfaces, motion cap-
ture, and a medical system. In complex scenes, the multi-object
tracking problem is still challenging due to frequent occlusions
and complex interactions between objects. Recently, devel-
opment of detectors [10], [31] allows us to obtain reliable
detections, and this leads to the prosperity of the tracking-by-
detection approach [7], [17], [26], [40].

The tracking-by-detection approach can be categorized into
two classes: batch tracking and online tracking systems. Once
a set of detections is collected by temporal sliding window
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search for all frames, the detections are gradually connected
based on data association in the batch tracking systems (or
detection-association-based systems) [2], [28], [40]. A hier-
archical association framework [17] is developed to produce
longer tracklets (i.e. trajectory fragments) at each level grad-
ually. [23] explicitly models object interaction such as mutual
occlusion and spatial layout consistency, and simultaneously
optimizes trajectories using dynamic programming. [40] and
[28] solve a global data association problem using a min-
cost flow algorithm in a network flow. In [8], short tracklets
are merged into longer ones by finding maximum weighted
independent sets in a graph of detection pairs. [37] develops an
online-learned CRF model and links tracklets by minimizing
an energy function. The batch tracking systems can handle
detection errors and tracking failure caused by occlusions, and
show high accuracy and robustness even in complex scenes.

However, the batch tracking systems are unsuitable for real-
time tracking applications. They require detection responses of
future frames beforehand and accompany enormous computa-
tion to generate optimized trajectories — in order to construct
longer trajectories, an iterative linking process is performed
until maximizing the predefined association cost. It implies
that identities of the tracklets can be changed by linking results
at each iteration.

On the other hand, online tracking systems [7], [26], [33]
can be applied for time critical applications since they sequen-
tially build trajectories based on frame-by-frame association
without the iterative associations. However, the online systems
are likely to produce fragmented trajectories under occlusions
when detections of occluded objects are not available or
inaccurate. Moreover, they suffer from template drift when
motions and appearances rapidly change. As a result, the
performance of the online systems is significantly degraded
in complex scenes where objects are frequently occluded, and
their appearances are quite similar.

In this paper, we propose an online tracking system, which
can robustly track multiple objects even in complex scenes
but also be suitable for online tracking applications. Basically,
we develop our system based on the Bayesian approach as
done in previous online tracking systems [7], [18], [26], [33]
to sequentially estimate the states of objects (i.e. position,
size, and ID) with online provided detections at each frame.
The proposed system, however, integrates three main parts to
tackle the problems of previous online tracking systems as
shown in Fig. 1.

In order to correctly assign detections with tracks under
partial occlusions, the visual tracking part associates online
detections with existing tracks by evaluating track existence
probabilities as well as the likelihoods of them, and updates
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Fig. 1. The proposed framework for online multi-object tracking.

states of tracks with associated detections. However, it is still
difficult to track objects when no detection is available for a
long time. In this case, the track management part terminates
tracks with low existence probabilities and associates the
terminated tracks with other tracks or detections belong to
the same objects so as to link them. For successful associ-
ation in the other two parts, the online model learning part
incrementally learns discriminative appearance models with
updated tracking results. It allows us to distinguish between
tracked objects and background, but also between interacting
objects (i.e. closely spaced objects).

The proposed system produces long trajectories without
future frames and any iterative optimization in complex scenes.
We extensively evaluate the performance of our system and the
key parts of the system using challenging tracking datasets.
The main contributions of this work include: (1) a fully
automated online tracking system to track objects robustly
through severe occlusions; (2) a Bayesian tracking method
based on a novel data association to update states of tracks
with online detections; (3) a track management method to
associate fragmented tracks; (4) an online learning method to
learn discriminative appearance models of tracked objects.

The rest of the paper is organized as follows. We first dis-
cuss related works in Section II. Then, we formulate an online
multi-object tracking problem in Section III. We propose an
online multi-object tracking system in Section IV and provide
some experimental results in Section V. We briefly discuss the
effectiveness of main parts of the system in Section VI and
finally conclude the paper in Section VII.

II. RELATED WORK

A tracking-by-detection approach finds states and IDs
of multiple objects with detections of pre-trained detec-
tors [10], [31]. The tracking-by-detection approach often fails
in complex scenes when the detection responses are unreliable
(e.g., false positive and missing detections, inaccurate detec-
tions of object locations and sizes). To track multiple objects
in online under difficult situations, various online tracking
systems [7], [26], [33], [34] are developed.

Based on the Bayesian framework [18], [26], the online
tracking systems perform two recursive procedures to estimate
states of multiple objects at each frame. In prediction estimated
states up to previous frames are propagated using the object
dynamic model. The predicted states are updated by evaluating
the likelihood between the predicted states and associated
observations using the observation model.

[26] designs a particle filtering-based framework and
carefully guides multiple trackers with detections provided
by a boosted object detector. [9] extends the boosted particle
filter [26] using an independent particle set for each target
to improve robustness under occlusions. For single and multi-
target tracking, [35] extends the PDA and JPDA algorithms [4]
with the concept of target existence. To enhance detection
and tracking performance, [31] exploits an edgelet-based part
model for describing appearances of objects. For tracking in
multi-dimensional state space, [27] develops the scatter search
particle filter by embedding scatter search metaheuristic [15]
into the particle filtering [18]. However, all of these approaches
suffer from template drift when motions and appearances
dramatically change since they only rely on outputs of offline-
trained detectors.

In order to solve the drift problems under occlusions, [7]
uses the continuous confidence map by combining a pre-
trained detector and an online-trained classifier outputs. To
handle partial occlusions in the detection and tracking stages,
[34] employs deformable part models for describing appear-
ances of objects. Although they show improved performance
in many scenarios, both approaches are prone to produce
fragmented trajectories under long-term occlusions since any
tracking linking process is not adopted.

To resolve both partial and long-term occlusions, the pro-
posed online tracking system takes advantages of batch and
online tracking approaches. As similar to other online tracking
approaches, our visual tracking part is designed based on
the Bayesian approach for online tracking, but a novel data
association with a track existence probability is incorporated
to assign detections into tracks more correctly under partial
occlusions. Subsequently, our track management part performs
track-to-track association to link fragmented tracks under long-
term occlusions as similar to tracklet association in batch
tracking systems.

Lately, in an attempt to combine the both approaches,
[38] has presented a tracking system with discriminative part-
based models. However, it is significantly different from ours
since their system is designed based on the batch tracking
framework. Therefore, tracks (or trackelts) are generated by
globally associating detections of the entire sequences. It
indicates that their system is not suitable for online tracking
applications. The two-stage tracking system proposed by [32]
is also similar to ours. They produce locally optimized tracks
by associating observations with tracks and globally optimized
tracks by associating fragmented tracks. They use the greedy
method for local association, whereas we employ a novel data
association. In addition, they use the predefined appearance
model, but our online learning part updates discriminative
appearance models with online tracking results. As a result,
our system is able to distinguish between different objects
well, even though the appearances of the objects frequently
change.

III. ONLINE MULTI-OBJECT TRACKING FORMULATION

In image sequences, we denote the state of the i -th object
at frame t as xi

t = (
pi

t , si
t

)
, where pi

t and si
t are the

Authorized licensed use limited to: Inha University. Downloaded on November 06,2020 at 08:34:01 UTC from IEEE Xplore.  Restrictions apply. 



2822 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014

position and size of the object. A set of states of all objects
existing at frame t is denoted as Xt . Then, the state of the
i -th object and the states of all objects up to frame t can
be represented as xi

t i
1:t i

2
and X1:t = {

xi
t i
1:t i

2
|1 ≤ t i

1 ≤ t i
2 ≤ t,

i = 1, · · · , Mt
}
, where Mt is the total number of objects up

to time t . t i
1 and t i

2 are the time stamps of start- and end- frame
of the i -th object.

Given detection responses, we denote an observation of
the i -th object at frame t as zi

t and denote an observation
set of the i -th object collected up to frame t as zi

t i
1:t i

2
, and

all observations collected up to frame t are denoted as Z1:t .
Given the set Z1:t , our goal is then to find the optimal states
of all objects X1:t . This problem can be formulated to find
X1:t by maximizing p(X1:t |Z1:t ) as the maximum a posterior
(MAP) formulation:

X̂
*
1:t � argmax

X1:t
p (X1:t |Z1:t ) (1)

Here, it is impossible to globally optimize Eq. (1) using
brute force search. Thus, we tackle the problem by recur-
sively updating p(Xt |Z1:t ) based on the sequential Bayesian
approach [18], [26]. Given detections zi

t i
1:t

of the i -th object,

xi
t is estimated by two recursive procedures as

Predict: p(xi
t |zi

t i
1:t−1

)=
∫

p
(

xi
t |xi

t−1

)
p
(
xi

t−1|zi
t i
1:t−1

)
dxi

t−1,

Update: p(xi
t |zt i

1:t ) ∝ p
(

zi
t |xi

t

)
p(xi

t |zi
t i
1:t−1

). (2)

When the observation set zi
t i
1:t

corresponding to the i -th

object is provided, the state of the object xi
t can be updated

well by Eq. (2). In most multi-object tracking scenarios,
however, it is not easy to reveal origins of observations
since the detections are often unreliable (e.g. false positive
and missing detections, and inaccurate detections for object
locations and sizes) and detections of other objects exist.
Therefore, a data association method is usually required to
correctly match observations with corresponding tracks.

Suppose that we have a set of tracks Xt = {
xi

t

}Mt

i=1 and a set

of observations Zt = {
zl

t

}Lt

l=1 at frame t , where Mt and Lt are
the number of tracks and observations at frame t , respectively.
Let denote an event that the l-th observation is associated with
the i -th track as �i

t,l . Then, a pairwise association problem is
formulated as

�̂i
t,l � argmax

�i
t,l

P
(
�i

t,l |Zt

)
. (3)

To solve Eq. (3), greedy and Hungarian methods [1] are
mostly used. Here, it is assumed that observations are con-
ditionally independent given the object state xi

t . Then, the
likelihood p (Zt |Xt ) can be expressed as

p (Zt |Xt ) =
Mt∏

i=1

Lt∏

l=1

p
(

zl
t |xi

t

)
, (4)

and an association score matrix S can be defined as

S = {
si,l

}
Mt ×Lt

, si,l = −log
(

p(zl
t |xi

t )
)
. (5)

In the greedy method [1], the track-observation pairs having
the minimum score in the association matrix S are selected in
ascending order until no further valid pair is available. On
the other hand, the association pairs minimizing a total cost
of the matrix S are determined in the Hungarian method [1].
In both methods, unreliable association pairs with low match-
ing scores are usually removed by thresholding.

IV. PROPOSED MULTI-OBJECT TRACKING SYSTEM

In this section, we discuss the proposed multi-object track-
ing system consisting of three main parts; visual tracking, track
management, and online model learning.

A. Overall Structure

We discuss the overall framework of the proposed system
illustrated in Fig. 1 as follows:

Visual tracking: At each frame, object hypotheses are
detected using a pre-trained detector and used as an input
of our system. Based on the proposed data association, the
provided detections are associated with existing tracks and
existence probabilities of tracks are updated. Then, track states
are estimated with the associated detections using particle
filtering.

Track management: Existing tracks with the low existence
probabilities are terminated. Terminated tracks are associated
with other tracks or detections to link them. A new track is
initialized using observations which are not associated with
any tracks.

Online model learning: Discriminative appearance, shape
and motion models of describing tracked objects are learned
by updated tracking results.

In the next sections, we present the details of each part.

B. Visual Tracking Based on a Novel Data Association
With Track Existence Probability

In complex scenes, many objects are often close to each
other and/or detections are inaccurate, and the likelihood
p

(
zl

t |xi
t

)
between a track and an observation is unreliable.

In this case, an incorrect association pair might have higher
association scores than the correct pair, and it gives rise to
ID switch problems. For accurate association even in complex
scenes, we propose a novel association method. Our method
is motivated from [24], and we extend their works to be
successfully applied for visual multi-object tracking. A main
difference is that the association score Eq. (5) is computed with
a track existence probability1 as well as the likelihood, com-
pared with the greedy [7], [26] and the Hungarian [17], [32]
association methods using only the likelihood. Moreover, it
allows us to consider a possibility that an associated observa-
tion could be originated from other objects and scene clutters
when calculating the association score. Once the association
pair is determined for each track, we update states of tracks
using particle filtering.

1A probability of that a track exists at frame t .
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1) Data Association With Track Existence Probability: Let
us denote a track existence probability as p(χ i

t ), where χ i
t

is an event that the i -th track exists at frame t . Given the
observation set Z1:t , we define a posterior association problem
by considering the existence probability, and the problem of
Eq. (3) can be reformulated as follows:

�̂i
t,l � argmax

�i
t,l

P
(
�i

t,l, χ
i
t |Z1:t

)
. (6)

Based on the Bayesian rule, the posterior data
association probability (Posterior DA) is represented as
follows:

P
(
�i

t,l, χ
i
t |Z1:t

)

︸ ︷︷ ︸
Posterior D A

= p
(

Zt |�i
t,l, χ

i
t , Z1:t−1

)

︸ ︷︷ ︸
Observat ion densit y

·

P
(
�i

t,l, χ
i
t |Z1:t−1

)

︸ ︷︷ ︸
Prior D A

/p(Zt |Z1:t−1), (7)

where the first and second terms are an observation den-
sity function and a prior data association probability. Now,
we derive the prior data association and the observa-
tion density function to achieve the posterior association
probability.

Prior data association. In a prior association step,
we approximately compute the association probability.
Then, the probability Pi

t,l = P(�i
t,l , χ

i
t |Z1:t−1) is

expressed as

Pi
t,l = P

(
�i

t,l |χ i
t , Z1:t−1

)
· P

(
χ i

t |Z1:t−1

)
, (8)

where P(χ i
t |Z1:t−1) means the propagation of the existence

probability P
(
χ i

t−1|Z1:t−1
)

updated up to frame t − 1, and is
computed using the first-order Markov chain model:

P
(
χ i

t |Z1:t−1

)
= �11 ·P

(
χ i

t−1|Z1:t−1

)

+ �21 ·
(

1 − P
(
χ i

t−1|Z1:t−1

))
, (9)

with transition probability �11 ≡ P
(
χ i

t |χ i
t−1

)
and �21≡

P
(
χ i

t |χ̃ i
t−1

)
, where χ̃ i

t represents the non-existence of the
track i at frame t (�11= 0.9 and �21= 0.1 are set in our
experiments).

As it requires knowledge of true states of other objects
to compute the first term of Eq. (8), we approximate it as
�i

t,l = P(�i
t,l |χ i

t , Z1:t−1) ≈ P(�i
t,l |χ i

t , Z1:t , single track) by
assuming that there exists one track only. Then, this term can
be represented with the likelihood p(zl

t |xi
t ) between the track

i and the observation l 2.

�i
t,l ≈ p(zl

t |xi
t )

ρi
l

/

Lt∑

j=1

p(z j
t |xi

t )

ρi
j

,

where ρi
l =

Mt∑

σ=1,σ �=i

P
(
χσ

t |Z1:t−1
)

p(zl
t |xσ

t ). (10)

2The likelihood model will be discussed in the section IV-D1 and the
likelihood score is evaluated by the observation model Eq. (28).

By substituting Eq. (9) and Eq. (10) into Eq. (8), we
calculate the prior data association probability:

Pi
t,l = p(zl

t |xi
t )

ρi
l

/

Lt∑

j=1

p(z j
t |xi

t )

ρi
j

· P
(
χ i

t |Z1:t−1

)
. (11)

Observation density function. To derive the observation
density function, we consider the following two events:
• Event 1: Observation l is originated from other objects.
• Event 2: Observation l is originated from a clutter.

To model the first event, we define the probability that the
observation l comes from the σ -th object among all other
objects excluding the i -th object using the prior association
probability Eq. (11) as:

Qi,σ
l � Pσ

t,l

∏Mt

w=1,w �=i,w �=σ

(
1 − Pw

t,l

)

= Pσ
t,l

1 − Pσ
t,l

∏Mt

w=1,w �=i

(
1 − Pw

t,l

)
. (12)

To model the second event, we introduce a clutter density
�t,l for the event that the observation comes from a clutter
(i.e. zl

t becomes a false positive) 3. In addition, we calculate a
probability that the observation l does not originate from one
of Mt − 1 potential objects excluding the i -th object

Qi,0
l �

∏Mt

σ=1,σ �=i

(
1 − Pσ

t,l

)
. (13)

By considering the both events, we can approximately
evaluate a density function for an observation that does not
generate from the i -th object:

p
(

zl
t |�̃i

t,l, Z1:t−1

)

≈ �t,l Qi,0
l +

∑Mt

σ=1,σ �=i
p(zl

t |xσ
t )Qi,σ

l

= Qi,0
l

(

�t,l +
∑Mt

σ=1,σ �=i

Pσ
t,l

1 − Pσ
t,l

· p(zl
t |xσ

t )

)

. (14)

Now, let us define a scatterer density meaning the event that
the l-th observation originates from a clutter or other objects
using the second term in Eq. (14) and denote it as

�i
t,l � �t,l︸︷︷︸

clut ter

+
Mt∑

σ=1,σ �=i

p(zl
t |xσ

t ) · Pσ
t,l

1 − Pσ
t,l

︸ ︷︷ ︸
other target

. (15)

Given that l-th observation comes from the i -th object, the
observation density function becomes

p
(

zl
t |�i

t,l, χ
i
t , Z1:t−1

)
= p(zl

t |xi
t )

and the observation density function

p
(

Zt |�i
t,l, χ

i
t , Z1:t−1

)

3It relies on the false positive rate of the used detector. When the false
positive rate decreases, the density also decreases.
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is represented as

p
(

Zt |�i
t,l, χ

i
t , Z1:t−1

)
= p

(
zl

t |�i
t,l, χ

i
t , Z1:t−1

)

×p
(

Zt\zl
t |�i

t,l, χ
i
t , Z1:t−1

)

= p(zl
t |xi

t )

Lt∏

j=1, j �=l

Qi,0
j �i

t, j

= p(zl
t |xi

t )

�i
t, j Qi,0

l

ρi,0
t ,

where ρi,0
t � p

(
Zt |�i

t,0, Z1:t−1

)
≈

Lt∏

j=1

Qi,0
j �i

t, j , (16)

where �i
t,0 represents an event that no observation originates

from the i -th object.
Posterior data association. To derive the posterior associ-

ation probability, we substitute the prior probability Eq. (11)
and the observation density Eq. (16) into Eq. (7) and denote
the normalization term with ct = p(Zt |Z1:t−1).

P
(
�i

t,l, χ
i
t |Z1:t

)

= c−1
t

p(zl
t |xi

t )

�i
t, j Qi,0

j

ρi,0
t · p(zl

t |xi
t )

ρi
l

/

Lt∑

j=1

p(z j
t |xi

t )

ρi
j

· P
(
χ i

t |Z1:t−1

)

≈ c−1
t

p(zl
t |xi

t )

�i
t, j

ρi,0
t · P

(
χ i

t |Z1:t−1

)
. (17)

In a similar manner, the posterior probability for the non-
association event of the i -th object P

(
�i

t,0|Z1:t
)

can be
expressed using the Bayesian rule

P
(
�i

t,0|Z1:t
)

= p
(

Zt |�i
t,0, Z1:t−1

)
· P

(
�i

t,0|Z1:t−1

)
/p(Zt |Z1:t−1),

= c−1
t ρi,0

t ·
{

1 − P
(
χ i

t |Z1:t−1

)}
(18)

Since data association events are mutually exclusive,

P
(
�i

t,0|Z1:t
)

+
Lt∑

l=1

P
(
�i

t,l, χ
i
t |Z1:t

)
= 1

and the ct = p(Zt |Z1:t−1) then can be derived as

ct = ρi,0
t ·

{
1 − P

(
χ i

t |Z1:t−1

)}

+
Lt∑

l=1

c−1
t

p(zl
t |xi

t )

�i
t,l

ρi,0
t P

(
χ i

t |Z1:t−1

)
,

= ρi,0
t

{
1 − P

(
χ i

t |Z1:t−1

)
· 	 i

t

}
,

where,	 i
t =

(

1 −
Lt∑

l=1

p(zl
t |xi

t )

�i
t,l

)

. (19)

Finally, we express the posterior data association probabili-
ties P

(
�i

t,l, χ
i
t |Z1:t

)
Eq. (17) and P

(
�i

t,0|Z1:t
)

Eq. (18) by

Algorithm 1 The algorithm for learning a discriminative
appearance model

combining Eq. (19) as follows

P
(
�i

t,0|Z1:t
)

= c−1
t ρi,0

t ·
{

1 − P
(
χ i

t |Z1:t−1

)}

= ρi,0
t

{
1 − P

(
χ i

t |Z1:t−1
)}

ρi,0
t

{
1 − P

(
χ i

t |Z1:t−1
) · 	 i

t

}

= 1 − P
(
χ i

t |Z1:t−1
)

1 − P
(
χ i

t |Z1:t−1
) · 	 i

t

(20)

P(�i
t,l, χ

i
t |Z1:t ) = c−1

t
p(zl

t |xi
t )

�i
t, j

ρi,0
t · P

(
χ i

t |Z1:t−1

)

=
(

p(zl
t |xi

t )

�i
t,l

)

·
(

P
(
χ i

t |Z1:t−1
)

1 − P
(
χ i

t |Z1:t−1
) · 	 i

t

)

,

(21)

We present an updated track existence probability with the
posterior association probabilities Eq. (20) and Eq. (21)

P
(
χ i

t |Z1:t
)

= P
(
�i

t,0, χ
i
t |Z1:t

)
+

Lt∑

l=1

P
(
�i

t,l, χ
i
t |Z1:t

)

≈
(
1 − 	 i

t

) · P
(
χ i

t |Z1:t−1
)

1 − 	 i
t · P

(
χ i

t |Z1:t−1
) . (22)

Using Eq. (21) we compute the score matrix S, Eq. (5), and
solve the association problem using the Hungarian method [1].
When evaluating the posterior association and track existence
probabilities, all parameters are automatically calculated in the
procedure except for the observation model p(zl

t |xi
t ) and the

clutter density �t,l . We design the observation model using
Eq. (28) with several cues including appearance, shape, and
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Fig. 2. Evaluation of the motion affinity between T1 and T2 under occlusion.

motion. The detail description of the clutter density is given
in Section V-A.2.

Motivation and benefits.The proposed association method
is motivated by the idea that a track with higher existence prob-
ability is firstly considered to be associated with detections
when several tracks have similar likelihoods with detections.
In other words, a more reliable detection is likely to originate
from a track with high existence probability rather than a
track with low existence probability. From extensive evaluation
and comparison with different association methods as shown
in Table III, we found this strategy allows us to determine
the track-to-observation (or detection) pair more accurately,
and improves tracking precision and reduces the number of
ID switch. In addition, as discussed in [24], it reduces the
computation complexity. Unlike JPDA [4], [35] and MHT [30]
with exponential computation complexity, the computation
complexity of the proposed method linearly increases with the
number of tracks and the number of detections. Moreover, the
track existence probability can be utilized for the basis of track
initialization, termination, and linking as discussed in [21].

2) Track State Estimation: Once an associated observation
is determined for each track using the proposed association
method, the states of the track is estimated by Eq. (2). In our
case, we exploit particle filtering [18] although several versions
of Bayesian filtering methods exist: with weighted samples, the
prediction, update, and resampling steps are recursively per-
formed. The dynamic model p

(
xi

t |xi,n
t−1

)
represents the tem-

poral correlation of track states between consecutive frames,
where n is a sample index. Four parameters consisting of 2D
positions and sizes (width and height) to handle translation
and scale change is transformed according to the Gaussian
distribution p

(
xi

t |xi,n
t−1

)
∼ N (xi

t ; xi,n
t−1, Qi

t ), where Qi
t is a

diagonal covariance matrix whose elements are the variances
of the parameters, and more discussed in Section V-A.2.
Sample weights wi,n

t ∝ wi,n
t−1 · p

(
zl

t |xi,n
t

)
are evaluated using

the likelihood Eq. (28). Given N samples, the state of each
object is determined by averaging the states of samples with
their weights as x̂i

t = ∑N
n=1 wi,n

t xi,n
t /

∑N
n=1 wi,n

t .

C. Track Management

In this section, we describe an automatic track management
method for track initialization, link and termination.

1) Track Link and Termination: Once long-term occlusion
occurs, it is extremely difficult in tracking an occluded object
because the observation of the track could not be available and
the appearance of the occluded object is significantly different

from the updated reference model of the object. To deal with
the long-term occlusion, we associate the fragmented tracks
to link them. We consider a terminated track as a fragmented
track or a complete track. To determine whether the track is
terminated or not, we employ the track existence probability
Eq. (22). When the probability is below to a termination
threshold (θ = 0.65 in our experiment), we consider it as
the terminated track.

Now, we propose a track-to-track association method to
link fragmented tracks, also determine whether the terminated
tracks are complete trajectories or not at once. Let denote
sets of terminated tracks, existing tracks and detections as{
T (−)

i

}na

i=1,
{

T (+)
j

}nb
j=1 and

{
y j

}nl
j=1 ⊆ Zt , where na , nb and

nl are the number of the elements of each set, respectively.
Since data association events are mutually exclusive, we only
consider the detection y j which is not associated with any
existing tracks.

Following association events are considered:
• T (−)

i associates with T (+)
j ;

• T (−)
i associates with y j ;

• T (−)
i is a complete (ended) trajectory.

Let us define a cost matrix for all events as follows:

S(na )×(nb+nl+na ) = [
Ana×nb Bna×nl Cna×na

]
, (23)

where A = [ai j ]na×nb and B = [bi j ]na×nl represent the
first and second events, ai j = −log

(
�(T (−)

i , T (+)
j )

)
and

bi j = −log
(
�(T (−)

i , y j )
)

are the association scores computed
by the track affinity and the observation models, Eq. (24)
and Eq. (28). C = diag

{
c1, ..., cna

}
represents the third

event, and ci = −log
(
1 − PE (T (−)

i )
)

is a probability that
the track is to be complete or not, where the existence
probability of the terminated track PE (T (−)

i ) is computed
by Eq. (22).

Once the cost matrix is constructed, we can determine the
optimal association pairs which are subject to minimizing the
total cost of the matrix S using the Hungarian algorithm [1].
We then obtain an optimal assignment matrix as O∗ =[
oi j

]
na×(nb+nl+na )

. For each pair oi, j = 1, we execute fol-
lowing operations:
• If j ≤ nb, link the tail of T (−)

i to the head of T (+)
j and

allocate the label of T (−)
i into the linked track;

• If nb < j ≤ nb + nl , the states of T (−)
i is updated with y j

and PE (T (−)
i ) is updated by Eq. (22);

• If j > nb + nl , PE (T (−)
i ) is propagated by Eq. (9).

In the second and third operations, the existence prob-
ability of the terminated track is adaptively updated. If
the existence probability of the terminated track exceeds
to the termination threshold, the terminated track is recovered
to the existing track. If not, we consider the track as the
complete trajectory.

2) New Track Initialization: By applying the offline-trained
detector at each frame, we can obtain object hypotheses with
the detection responses. In order to find new object hypothe-
ses, we search continuous and consistent detection responses
having both overlapped areas and similar sizes within temporal
sliding windows that are not already associated with any
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existing tracks. In our implementation, we link detections
when the ratio of an overlapped area over an union area of
detections is more than 0.5. If more than two detections are
overlapped in neighboring frames, we associate them with the
maximum ratio based on the greed algorithm [1]. When the
object hypotheses are associated in Tinit subsequent frames,
we generate a new track with associated hypotheses (in our
experiments, Tinit = 5).

D. Online Model Learning

In this section, we present track affinity and observa-
tion models used in visual tracking and track management.
In particular, we discuss an online learning method for learning
a discriminative appearance model.

1) Track Affinity and Observation Models: In this paper, a
track

Ti =
{

xi
t i
1:t i

2

}

is represented using several cues Ti = {Ai , Si , Mi }, where
Ai , Si and Mi are appearance, shape and motion models,
respectively (for clarity, we omit the time index t). To compute
the affinity between two tracks Ti and Tσ we propose a track
affinity model as follows:

� (Ti , Tσ ) = �A (Ti , Tσ ) · �S (Ti , Tσ ) · �M (Ti , Tσ ), (24)

The affinity score is computed based on similarities of appear-
ance, shape and motion models. The appearance affinity is
computed as follows:

�A (Ti , Tσ ) = 1

1 + exp(−H (X))
,

H (X) = Hi( f σ ) + Hσ ( f i ), (25)

where f i and f σ are appearance descriptors extracted from
the tail (i.e. the last refined position) and the head (i.e. the
first refined position) of the track i and the track σ as shown
in Fig. 2. An online learning method to train discriminative
appearance models Hi and Hσ and explanation of the appear-
ance descriptor are given in the next section IV-D2.

The shape affinity between tracks is evaluated with their
heights and widths. Here, the ratio between wi (or wσ ) and
hi (or hσ ) is not fixed and can be different for each object
and for each frame. The shape affinity is defined as

�S (Ti , Tσ ) = exp

(
−1

2

{ |hi − hσ |
hi + hσ

+ |wi − wσ |
wi + wσ

})
. (26)

As depicted in Fig. 2, the motion affinity of Ti and Tσ with
frame gap � is evaluated using a tail of Ti and a head of Tσ

based on a linear motion assumption as

�M (Ti , Tσ ) = N
(

ptail
i + vF

i �; phead
σ ,


)
·

N
(

phead
σ + v B

σ �; ptail
i ,


)
, (27)

The difference of the predicted position with the velocity
and the refined position is assumed to follow the Gaussian
distribution. Using the Kalman filtering [4] the forward veloc-
ity vF

i and refined positions are estimated from the head to
the tail of Ti , while the backward velocity v B

σ and refined

positions are estimated from the tail to the head of Tσ . Thus,
the four dimensional state vector consisting of positions and
velocities along with x and y coordinates are predicted and
updated in the Kalman filtering process. We use the constant
velocity model [4], [24] as a motion dynamic model and
predict last estimated states using the model. Then, we update
the predicted states with the associated detection determined
by the association method described in the section IV-B.1.
Thanks to the filtering, we evaluate the motion affinity with
the estimated forward and backward motions of tracks, but
also make trajectories more smooth with the refined positions.

The observation model p
(
zl

t |xi
t

)
evaluates the likelihood

between an associated observations -> zl
t and a track

Ti =
{

xi
t i
1:t i

2
|1 ≤ t i

1 ≤ t i
2 ≤ t

}
.

The likelihood is evaluated using same cues as the affinity
models but modified as follows

�A
(

Ti , zl
t

)
= 1

1 + exp(−H (X))
, H (X) = Hi( f z),

�S
(

Ti , zl
t

)
= exp

(
−1

2

{ |hi − hz |
hi + hz

+ |wi − wz |
wi + wz

})
,

�M
(

Ti , zl
t

)
= N

(
ptail

i + vF
i �; pz,


)
, (28)

Note that we evaluate the likelihood using all estimated states
Ti up to frame t rather than instant states xi

t at frame t .
f z is the appearance descriptor extracted from the location
of zl

t . The forward motion model is only exploited to evaluate
the motion affinity.

2) Online-Learned Discriminative Appearance Model: To
learn discriminative appearance models of tracks, we collect
training samples from tracking results at each frame and use
them for online appearance learning. In single object tracking
the discriminative appearance models [3], [16] are trained to
grow discrimination power between the tracked object and
scene background around the object. On the other hand, in
multi-object tracking, the appearance models should distin-
guish well not only between the objects and the background
but also between different objects.

To learn the discriminative appearance models effectively
for multi-object tracking, we consider two situations for each
object: a non-interacting object and an interacting object. In
this paper, we define some objects to be interacting when they
are closely located and/or (partially or fully) occluded each
other. To determine whether the object i is interacting or not,
we determine a set of objects Dσ

i interacting with the object
i using the mahalanobis distance as follows:

Dσ
i =

{
dσ

i,t |
(

pσ
t − pi

t

)T
(Si

t )
−1

(
pσ

t − pi
t

)
≤ γ

}Mt

σ=1,σ �=i
,

(29)

where pi
t and pσ

t are the positions along with x and y
coordinates of the tracked objects. Si

t = diag[(wi
t )

2 (hi
t )

2] is
determined by the width wi

t and the height hi
t of the object i

at frame t .
When the object is not interacting with any object Dσ

i = ∅,
we collect N+ positive samples from image patches extracted

Authorized licensed use limited to: Inha University. Downloaded on November 06,2020 at 08:34:01 UTC from IEEE Xplore.  Restrictions apply. 



BAE AND YOON: ROBUST ONLINE MULTIOBJECT TRACKING WITH DATA ASSOCIATION AND TRACK MANAGEMENT 2827

Fig. 3. Our sample collection strategy for learning discriminative appearance models for non-interacting and interacting objects. Blue and red rectangles
mean positive and negative samples, respectively.

within positions and sizes of the object up to current frames.
On the other hand, N− negative samples are collected from
the image patches at different locations around the object for
discrimination between the object and background. In our case,
we extract 10 negative sample patches at random locations
to be overlapped with the positive sample patch less than
50%. However, we use negative sample patches from the
positive samples of other interacting objects when the object
is interacting with other objects. Fig. 3 shows our sample
collection strategy for learning appearance models of the non-
interacting and interacting objects.

At the image patch, an appearance descriptor by concate-
nating several feature histograms consisting of the HSV color
histogram, the histogram of oriented gradient (HOG) [10],
the local binary pattern (LBP) [25] is generated for capturing
color, shape, and texture properties;

f i
l =

[
f i
hsvl

, f i
lbpl

, f i
hogl

]
∈ �d .

Then, positive and negative samples of the track i at frame t
are constructed by

Positive samples:
B+ = {

f i
l+ ,+1

}
, l+ = 1, ..., N+,

Negative samples:
(Non-interacting) B− = {

f i
l− ,−1

}
, l− = 1, ..., N−,

(Interacting) B− = {
f σ
l+ ,−1

}
, σ = 1, ..., Mt , σ �= i.

(30)
where l+ and l− are indexes of positive and negative samples,
respectively. Once training samples are collected, we learn
a discriminative appearance model of each track at frame t
using ensemble learning [3]. The overall learning algorithm is
described in Algorithm 1.

V. EXPERIMENTAL RESULTS

As described in Algorithm 2, the proposed system has
been implemented in MATLAB. More detailed explanation to
implement our system is given in Sec. V-A. The datasets and

Algorithm 2 The overall algorithm for the proposed multi-
object tracking system

evaluation metrics for performance evaluation are explained
in Sec V-B and Sec. V-C. We first evaluate performance of
our system by comparing with other state-of-the-art systems
in Sec. V-D and speed of our system in Sec. V-E. In addition,
we show how the main parts (i.e. visual tracking, track
management and online model learning) affect the overall
performance of our system in Sec. V-F.

A. Implementation

1) Detection: For VS-PETS 2009 and ETHMS datasets,
we have used the public available detections provided by [2]
and [20], [37], respectively. Thus, we can compare tracking
performance of our system and [2] with same detections
as in Table. II. Also, the comparison results between our
system and [20], [37] with identical detections are reported
in Table. II. Since public detections for CAVIAR and Hockey
datasets are not provided, we have used the multiscale pedes-
trian detector provided by the [13]. A main reason is that
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the detector can be operated in almost real time (∼ 5fps
on 640×480 images) by avoiding constructing finely sampled
image pyramid: They exploit the gradient histogram extracted
at a single scale to approximate feature responses at nearby
scales. We have not manipulated setting parameters in the
detector code [13] except for the image upscaling levels. For
CAVIAR dataset, we have tuned the upscaling level to 2, but
we have increased the level to 8 in order to detect small hockey
players for the Hockey dataset.

2) System Parameters: All parameters have been found
experimentally, and most remained identical parameters for
all datasets. From the extensive experiments, we observe
that the most parameters do not much affect the overall
performance of our system. However, the clutter density �t,l

is a crucial parameter since the combination of the likelihood
term p(zl

t |xi
t ) and clutter density �t,l Eq. (15) determines the

posterior data association probability Eq. (21) and posterior
track existence probability Eq. (22). The data association
probability and track existence probability are decreasing when
likelihood score is fixed, but clutter density is increasing.
When the clutter density is extremely high, a track could be
quickly terminated and not associated with any observation.
In our experiment, we have set the clutter density to 0.1 for
all experiment although the clutter density can be accurately
modeled using scene structure information (e.g entrances, exits
and occluders).

In order to calculate data association and track existence
probabilities, the likelihood model p(zl

t |xi
t ) Eq. (28) is also

essential. However, the most parameters (i.e. the positions,
sizes and velocities) of appearance, motion and shape models
are automatically determined by tracking results. The covari-
ance for forward and backward motions have been set to

 = diag[252 752] and fixed for all experiments.

The initial object size has been determined by averaging
associated detections for 5 frames. The initial particle positions
are drawn from a normal distribution with a standard deviation
q = 2 · scaleh pixels, centered at the position of the last
associated detection. The standard deviations for the position
and size noises have been set to q = 1.5 · scaleh and
q = 2 · scaleh pixels, receptively. The scaleh = 2.5 has been
determined for a height of 180 pixels and automatically tuned
by the estimated height of the tracked object. For all dataset,
150 samples are used in particle filtering process. To deal with
abrupt motion change, we increased the standard deviation of
the position to q = 3 · scaleh pixels for ETHMS datasets.

B. Dataset

We evaluate the performance of the proposed multi-
object tracking system with four challenging datasets: the
CAVIAR [11], the VS-PETS 2009 benchmark [12], the
Hockey [26], and the ETH mobile scene (ETHMS) [14]
datasets. The datasets are separated into two types: static
scenes (CAVIAR and VS-PETS 2009) and moving scenes
(ETHMS and Hockey).

The CAVIAR dataset includes 26 video sequences of a cor-
ridor in a shopping center taken by a single camera with frame
size of 384×288. For fair comparison with other systems, we

TABLE I

PERFORMANCE COMPARISON BETWEEN OUR SYSTEM AND OTHER

STATE-OF-ART TRACKING SYSTEMS FOR THE HOCKEY DATASET

select 20 video sequences as reported in [20] and use the
ground truth provided in [11].

The VS-PETS 2009 dataset is captured from multiple static
cameras, and we only used tracking sequences captured from
view-1 with frame size of 768×576. We exploit PETS S2.L1
and PETS S2.L2 sequences in the dataset. PETS S2.L2 is
relatively more difficult than PETS S2.L1 since the crowded
density of PETS S2.L2 is much higher and frequent occlusions
are occurred by object interactions.

The hockey dataset includes additional difficulties to track
objects. Most of all, the scene is taken from a moving
camera, while CAVIAR and PETS dataset are captured from
a static camera. Thus, there exists abrupt motion change of
players caused by the object and camera motions. Moreover,
the appearances and sizes between players are significantly
similar. Therefore, in associating detections with the tracks, the
motion cue is more distinctive than appearance and shape cues.

The ETHMS dataset is taken by a pair of cameras
on a moving stroller. We use Sunny day and Bahnhof
sequences captured in busy streets scenes for comparison
with [20], [29], [37]. The dataset is much more difficult to
track objects than the Hockey dataset since the dataset is
captured from front view cameras on the ground plane, while
the Hockey dataset is captured from the top view camera.
Thus, the motions and sizes of pedestrians change more
abruptly, and severe occlusions occur. These challenges make
data association more difficult. Though in the dataset left and
right views are provided, we only employ the left view images
in tracking objects without using depth and ground plane
information.

C. Evaluation Metric

For quantitative evaluation for tracking performance, we
utilize not only the CLEAR MOT metrics [6] but also metrics
used in [19] and [20]:

• MOTP (↑): Multi-object tracking precision, intersection
areas between bounding boxes of tracking results and ground
truth over union areas of the bounding boxes.

• MOTA (↑) = 1 −
∑

t mt+ f pt+mmet∑
t gt

: Multi-object tracking
accuracy, where mt , f pt , mmet , and gt are the number of
misses, of false positives, of mismatches and total objects,
respectively, at frame t .

• FN (↓) =
∑

t mt∑
t gt

: The ratio misses in the sequences over
the total number of objects present in all frames.

• FP (↓) =
∑

t f pt∑
t gt

: The ratio false positives over the total
number of objects present in all frames.

• IDS (↓): Identity switches, the number of times that an
output track changes its matched GT identity.
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TABLE II

PERFORMANCE COMPARISON BETWEEN OUR SYSTEM AND OTHER STATE-OF-ART SYSTEMS FOR THE CAVIAR, PETS AND ETHMS DATASETS

Fig. 4. From top to bottom, tracking results for CAVIAR - OneStop-
MoveEnter1, ShopAssistant1, ShopAssistant2 and ThreePastShop1 sequences
are shown. (a) Frame #774. (b) Frame #866. (c) Frame #949. (d) Frame
#1369. (e) Frame #1465. (f) Frame #1521. (g) Frame #3358. (h) Frame #3383.
(i) Frame #3568. (j) Frame #936. (k) Frame #1092. (l) Frame #1214.

• GT : The number of objects in the ground truth.
• MT (↑): The number of mostly tracked objects, which

the trajectories are tracked for more than 80%.
• ML (↓): The number of mostly lost objects, which the

trajectories are tracked for less than 20%.
• PT = 1 − MT − M L: The number of partially tracked

objects.
• FG (↓): Fragments, the number of times that a ground

truth trajectory is interrupted.
• REC (↑): Recall, the number of correctly matched detec-

tions divided by the total number of detections in ground truth.

• PRE (↑): Precision, the number of correctly matched
detections divided by the total number of output detections.

• FAF (↓): False alarm per frame, the number of false
alarms per frame.
Here, the arrow symbol ↑ represents that higher scores indicate
better results, and ↓ means that lower scores indicate better
tracking results.

D. Performance Evaluation of the Proposed System

In Table I–II, the performance of our system is highlighted
with gray color as in the first rows in each Table. We mark the
online tracking systems with blue color, and the best scores
for metrics with red color. Also, tracking systems evaluated
with the same detections as our system are marked with �.

Results for Hockey dataset. We employ the pedestrian
detector provided by [13], and the locations and sizes of
objects are manually labeled for all frames because public
detections and ground truth are not provided. The comparison
results are given in Table I. Thanks to the low FN and FP
scores, we achieve the best performance compared to state-
of-art tracking systems [7], [8], [26] in terms of MOTA.
The performance differences for the MOTP and IDS metrics
are negligible. The qualitative tracking results are shown in
Fig. 5(a) – 5(e), and our system has successfully tracked
motions of players although their motions abruptly change and
appearances are similar.

Results for CAVIAR dataset. In Caviar dataset, we obtain
detections with the pre-trained pedestrian detector [13] since
public detections are not available. The comparison results
are shown in Table II. As can be seen, our system achieves
significant improvements of the performance; our system
achieves the best performance in terms of MT, ML and REC
scores. In addition, we reduce IDS by over 50%, compared
to [17], [19], [22], [40]. Remarkably, our system achieves the
performance improvement without future frames. Some visual
tracking results are shown in Fig. 4. Although the pedestrian 1
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Fig. 5. Tracking results with the proposed system for the Hockey, VS-PETS 2009 and ETHMS datasets. At each frame, states (i.e. positions and sizes)
and identifies (IDs) of tracked objects are illustrated in color boxes and color numbers. The terminated tracks and their IDs are shown in black boxes and
white numbers. Also, for Hockey, PETS-L1 and PETS-L2 datasets (captured in top views), the trajectories are depicted with color lines. (a) Hockey #35.
(b) Hockey #52. (c) Hockey #70. (d) Hockey #86. (e) Hockey #100. (f) PETS-L1 #618. (g) PETS-L1 #626. (h) PETS-L1 #630. (i) PETS-L1 #741. (j) PETS-L1
#784. (k) PETS-L2 #67. (l) PETS-L2 #82. (m) PETS-L2 #97. (n) PETS-L2 #101. (o) PETS-L2 #105. (p) ETH-Sunny #224. (q) ETH-Sunny #237. (r) ETH-
Sunny #254. (s) ETH-Sunny #298. (t) ETH-Sunny #321. (u) ETH-Bahnhof #471. (v) ETH-Bahnhof #495. (w) ETH-Bahnhof #520. (x) ETH-Bahnhof #612.
(y) ETH-Bahnhof #623.

TABLE III

QUANTITATIVE EVALUATION RESULTS OF THREE MAIN PARTS OF OUR SYSTEM. WE TAKE THE AVERAGE OF THE EXPERIMENTAL RESULTS FOR THE

FOUR SEQUENCES WITH DIFFERENT EXPERIMENTAL SETTINGS

and 3 are severely occluded by other pedestrians, our system
accurately keeps their IDs and estimates locations and sizes
as shown in Fig. 4(a) – 4(c).

Results for VS-PETS dataset. The comparison results are
shown in Table II. We exploit the same detections and ground

truth provided by [2] for both sequences. We observe that
the performance of our system outperforms [2] in terms of
the most metrics for the PETS-L1 and PETS-L2 sequences,
receptively. In particular, the MT and REC scores are greatly
improved. However, in return the PRE and FAF scores
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are deceased and increased, respectively, due to more false
positives.

Although different detections and ground truth are used, a
large performance gap between our system and other online-
tracking systems [7], [39] is shown in terms of the MOTP and
MOTA. Compared to batch tracking systems [5], [20], [36],
our system shows the improved performance. Remarkably,
our system achieves the perfect MT and ML scores for the
PETS-L1 sequence. As shown in Fig. 5(f) - 5(o), our system
robustly tracks multiple objects and constructs long trajectories
although there exist frequent occlusions cased by other object
interactions and the scene clutter (streetlight).

Results for ETHMS dataset. The performance of our
system is compared in Table II. We exploit same detec-
tions and ground truth provided in [20] and [37]. Note that
batch tracking systems [20], [37] use detections of the entire
sequence at once, but we use detections at each frame only.
Nevertheless, we improve the MT scores by more than 16.82%
and 2.4% and reduce ML scores by about 4.97% and 4.8%,
when comparing [20], [37], separately. Also, our system is far
beyond the performance of online tracking system [29] for all
metrics. The performance improvement shows the superiority
of our online-tracking system.

For Sunny day and Bahnhof sequences, Fig. 5(p) - 5(y)
show qualitative evaluation results using our system. In both
examples, motion and shape affinity scores are less informative
when associating (linking) tracks due to the abrupt change of
motions and shapes caused by the camera motion. However,
by exploiting our online-learned discriminative appearance
models, the proposed system successfully links fragmented
tracks. The results also explain the performance improvement
in terms of MT, ML and REC scores in Table II. As can be
seen, we observe that pedestrian 3 (Fig. 5(p) - 5(t)), 22, and 43
(Fig. 5(u) - 5(y)) are correctly tracked even under long-term
occlusions.

E. Speed of the Proposed System

The proposed systems was implemented using the
MATLAB on a PC with 3.07 GHz CPU without any
parallel programming. The complexity of the implemented
system depends on the number of detections and objects.
For less crowded scenes such as PETS-L1, ETHMS, and
CAVIAR datasets, the run time is 0.2 ∼ 0.5 (sec/frame).
For very crowded scene such as PETS-L2, the run time is
0.75 ∼ 1.0 (sec/frame). The most expensive processing in our
system is spent in extracting an appearance descriptor, which
are shared by online-learning and tracking. Furthermore, we
test the processing time of our system with pre-defined appear-
ance model. By removing the online-learning procedure, the
computation cost is reduced by 16%. This results means that
computation expense of our tracking system is not significantly
increased by our online-learning method.

F. Performance Evaluation of the Main Parts

To verify the effectiveness of the main parts, we compare
the performance of our system

Fig. 6. For ETH-Bahnhof sequence, tracking results with different association
methods: From top to bottom, tracking results with the our data association,
greedy, and Hungarian methods are depicted.

Fig. 7. For the CAVIAR-OneStopMoveEnter1 sequence, detections (black
circles) and the estimated trajectories of objects (color lines) up to 1590 frames
are depicted. The estimated trajectories without our linking method and with
it are shown in the first and second rows, respectively.

• Exp. 1-(a): Replace our data association using track
existence probability with the greedy association [1].

• Exp. 1-(b): Replace our data association using track
existence probability with the Hungarian association [1].

• Exp. 2: Eliminate the linking part in track management.
• Exp. 3: Eliminate the online appearance learning part.

We exploit PETS-L1, PETS-L2, ETH-Bahnhof and ETH-
Sunny sequences and provide average results of evaluation
metrics for the four sequences in Table III.

1) Visual Tracking: In Exp. 1, we show the effec-
tiveness of the visual tracking part based on our data
association with track existence probability by replacing
the association with Greedy (Exp. 1-(a)) and Hungarian
methods (Exp. 1-(b)). Although the performance difference
between the greedy and Hungarian methods is not much,
we obtain better results using our data association. In par-
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Fig. 8. For the ETH-Bahnhof sequence, tracking results with our online-
learning method (top) and without it (bottom).

ticular, our association method allows us to improve the
MOTP score and reduce IDS numbers. It implies that
the positions and sizes of objects have been more accu-
rately estimated, and IDs of objects are conserved better
due to correct association of our method. Fig. 6 shows
tracking results using different data association methods.
In the first row, two women walking together (ID 84 and 86)
are successfully tracked using our data association method
even though they are occluded by other pedestrian. On the
other hand, their IDs are mismatched using greedy and
Hungarian methods as shown in the second and third rows.

2) Track Management: The evaluation results of our system
without the track linking method are shown in Exp. 2. As
expected, performance of our system is degraded in term
of all metrics. Especially, we observe that the number of
fragmented tracks has been significantly increased, but also
tracking precision has been decreased. Furthermore, estimated
trajectories of our system with the linking method and without
it are compared in Fig. 7. The experimental results confirm
that the fragmented tracks can be accurately linked using our
linking method.

3) Online Model Learning: In Exp. 3, we evaluate similarity
of appearances using the Bhattacharyya distance of multi-cue
histograms in stead of scores of our discriminative classifiers in
Eq. (25) and Eq. (28). We observe that the MOTP, IDS and MT
scores are severely deteriorated since the discrimination power
is reduced. We further compare tracking results in Fig. 8 when
using our online-learning method and does not. As shown
in the first row, using the online-learning ID 8 of the old
man is accurately maintained even under the full occlusion,
but its ID is not matched without the learning method in the
second row.

VI. DISCUSSION

Each part of our system can be applied for other tracking
systems. The visual tracking part based on our data associ-
ation, which sequentially grows trajectories of objects with
online detections, can be used to a tracking algorithm devising
data association of online tracking systems [7], [9], [26], [31],
[32]. Furthermore, it can be used to link detections for local
association in the batch tracking systems [17], [22]. Also, the
track management part can be easily incorporated into other
tracking systems [7], [9], [33] as a method to link fragmented
tracks generated by occlusions. In addition, the online learning
part can replace other online learning methods to learn a
discriminative appearance model [7], [19], [33].

VII. CONCLUSION

We have proposed an online multi-object tracking system
consisting of three main parts. The visual tracking part based
on a novel data association with track existence probability
allows us to track objects robustly under partial occlusions.
To deal with long-term occlusions, our track management part
performs track-to-track association to link fragmented tracks.
For successful association in other two parts, the online
learning part incrementally updates discriminative appearance
models with online tracking results.

Our experimental results using challenging tracking datasets
have shown the improved performance of the proposed system,
compared to other state-of art tracking systems. We further
have demonstrated the effectiveness and usefulness of each
part of the system. Indeed, we expect that the main parts can
be applied in other tracking systems and used in a wide range
of application scenarios. To increase description ability of our
system, a part-based appearance model would be beneficial
and increase performance of our system. Furthermore, prior
knowledge of scene structures allows us to design the clutter
density model more accurately, and the well designed model
could enhance the performance of data association.
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