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 A B S T R A C T

Recent knowledge distillation (KD) for 3D object detection often involves costly LiDAR or multi-camera data. 
We focus on monocular camera-based 3D detectors, where missing 3D cues cause large feature gaps. To address 
this, we propose region-aware KD, aligning object features by matching their scales and pyramid levels. We 
introduce a probabilistic distribution to weigh region importance. Applied to MonoRCNN++ and MonoDETR 
on the KITTI and Waymo dataset, our approach achieves reduced complexity and strong performance with a 
lightweight backbone. Compared to recent KD methods, ours excels in both effectiveness and efficiency.
1. Introduction

3D object detection is to identify and localize objects in a 3D 
coordinate from sensor data. This task can be roughly categorized into 
LiDAR-based 3D detection using point clouds and camera-based 3D 
object detection using images. Due to the usage of depth features, 
the LiDAR-based detector produces more accurate results than the 
image-based detector. However, it is costly and constrained rather in in-
stallation. Therefore, there are many efforts to enhance the 3D accuracy 
of camera-based detectors. For instance, CADDN [1] utilizes a heavy 
backbone (ResNet-101) to generate categorical depth distribution and 
accurate 3D feature maps. However, these methods tend to use high 
computational resources due to the complexity of CNN.

To mitigate this complexity of camera-based 3D object detection, 
knowledge distillation (KD) methods for 3D object detection are devel-
oped. CMKD [2] performs KD to transfer the knowledge of a LiDAR 
model to the camera detector by aligning bird’s eye view (BEV) feature 
maps. BEVDistill [3] also aligns BEV feature maps between a LiDAR 
expert and multi-camera apprentice models by focusing the distillation 
of the foreground region more. However, these methods require dense 
point clouds in a whole scene. Recently, FD3D [4] presents the KD 
method between multi-camera-based detectors. It performs KD on both 
perspective view and BEV using deformable attention. Even though it 
shows promising results, the extra cost of using multi-view sensory data 
is a burden, emphasizing the need for monocular camera-based KD. As 
shown in Table  1, monocular camera-based KD remains underexplored.

Consistently, a more cost-efficient KD method can transfer the 
knowledge of an expert detector to an apprentice detector on a monoc-
ular camera. The main bottleneck of this monocular-based KD is limited 
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geometric features such as depth cue. As mentioned in [5], the depth 
is consistently associated with object 2D locality. The absence of 
depth features also accelerates the knowledge gaps between expert and 
apprentice detectors due to the higher dependency on a used feature 
extractor.

To minimize the knowledge gap between 3D detectors, we propose 
a region-aware knowledge distillation (RAKD) on monocular-camera-
based 3D detection. Since object locality is the main factors to affect 
3D precision usually, we transfer the knowledge to a target detector. 
Our region-aware KD is based on a region-of-interest (RoI) feature 
alignment extracted from detectors with different knowledge. To han-
dle object geometric variation, it is necessary to employ multi-scale 
feature maps [6,7] and select a suitable feature-scale level of extracting 
an object feature. However, we observe that the one-to-one alignment 
between a RoI feature pair extracted at a single scale does not improve 
an apprentice detector dramatically. Therefore, we align a region fea-
ture pair across a whole feature scale. Since an appropriate feature 
scale is also relevant to object scale [7], we propose a soft assignment 
weight that models the geometrical relationship between feature pyra-
mid scales and object regions as a normal distribution. As shown in 
Table  7, we compared normal, laplace, and uniform distributions, and 
observed that the normal distribution consistently achieved the highest 
average performance. This result led us to adopt the normal distribution 
for modeling the assignment weight. This is likely due to its smooth, 
bell-shaped curve, which provides a more balanced weighting across 
feature pyramid levels compared to the sharper peak of the Laplace 
distribution or the equal weighting of the Uniform distribution. We then 
use the distribution from the proposed soft assignment to compute the 
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Fig. 1. The overall structure of our region-aware knowledge distillation for monocular-based 3D detection.
Table 1
Comparison sensor types of KD methods for 3D object detection: ES and AS mean expert 
and apprentice sensor. L, C, and MC are LiDAR, a monocular camera, and multiple 
cameras.
 Methods ES AS Additional network  
 CMKD [2] L C –  
 BEVDistill [3] L MC –  
 X3KD [15] L MC Segmentation network 
 FD3D [4] MC MC KD head  
 RAKD (Ours) C C –  

importance of a region feature per scale and use the score as coefficients 
of our multi-scale region feature alignment. As a result, this region-
aware KD can transfer the expert knowledge of object locality and 
semantics across all feature scales.

To sum up, the main contributions of this work are:

• Knowledge distillation which can be applied for monocular-based 
3D object detection.

• Region-aware KD to measure the geometrical relation score of 
object locality and feature pyramid scales and exploit it for multi-
scale RoI feature alignment.

• Soft assignment weight that leverages additional pyramid levels, 
adapted to each object’s scale, to align different semantic feature 
levels.

We evaluate our RAKD method by incorporating it into recent 
3D object detector, MonoRCNN++ [8] and MonoDETR [9]. On the 
KITTI [10] and Waymo dataset [11], our apprentice detector increases 
detection speed by 55% compared to their experts. In addition, we 
compare our RAKD with other state-of-the-art KD methods: PKD [12], 
SemCKD [13] and GKD-BMFI [14]. Compared to PKD, SemCKD and 
GKD-BMFI, our method provides more detection gains by 9%, 15% and 
9% in MonoRCNN++.

2. Proposed region-aware knowledge distillation method

To address the knowledge discrepancy arising from the lack of 
3D geometric features in a monocular camera domain, we propose 
a Region-Aware Knowledge Distillation (RAKD) method between ex-
pert 𝑇𝑒 and apprentice 𝑇𝑎 detectors. The overall framework of the 
proposed RAKD is illustrated in Fig.  1. Let 𝐝∗ = 𝑥, 𝑦,𝑤, ℎ  be a 
( )

697 
bounding box, where 𝑥, 𝑦, 𝑤 and ℎ are the top-left positions, width 
and height. We also denote 𝐝 a predicted bounding box from the region 
proposal network [16]. 𝐩 ∈ R𝐶 is a predicted confidences, where 𝐶
is the cardinality of object classes. Given an input image, we extract 
multi-scale feature maps {𝑃 𝑙}𝐿𝑙=1, 𝑃

𝑙 ∈ R𝐻 𝑙×𝑊 𝑙×𝐶 𝑙  from a backbone 
network(e.g. ResNet50/18 with FPN), where 𝐿 is the number of feature 
pyramid levels, and 𝐻 𝑙, 𝑊 𝑙, and 𝐶 𝑙 is the height, width, and the 
number of channels of 𝑃 𝑙.

We define a region-aware KD loss to transfer the knowledge 𝑇𝑒 to 
𝑇𝑎 as follows: 

RAKD = 𝑤RASRoI +𝑤FitFit +𝑤HinHin (1)

where 𝑤RA, 𝑤Fit and 𝑤Hin are balancing terms that adjust the magni-
tude of each loss. Hin is the KL divergence between 𝐩𝑒𝑖,𝑗 and 𝐩𝑎𝑖,𝑗 [17]. 
Fit is a FitNet KD loss between 𝑃 𝑙

𝑒  and 𝑃 𝑙
𝑎 . However, the 𝐾𝐷 does 

not transfer the intermediate feature knowledges of 𝑃 𝑙 and the object 
geometrical knowledge 𝐝∗. Therefore, we present a region-aware KD 
to minimize the geometrical knowledge discrepancy of 𝑇𝑒 and 𝑇𝑎 on 
multi-scale features.

2.1. Region-aware feature alignment

To facilitate knowledge transfer of the object geometric locality, 
we focus on aligning object region features of 𝑇𝑒 and 𝑇𝑎 given 𝐝∗ and 
{𝑃 𝑙}𝐿𝑙=1. Let 𝐷 = {𝐝∗𝑖 ,𝐩

∗
𝑖 }

𝑁
𝑖=1 be a set of GT bounding boxes. Along the 

feature pyramids {𝑃 𝑙
𝑒}

𝐿
𝑙=1 and {𝑃 𝑙

𝑎}
𝐿
𝑙=1 of 𝑇𝑒 and 𝑇𝑎, we then can extract 

an object region feature 𝐱𝑙𝑒,𝑖 and 𝐱𝑙𝑎,𝑖 of the size (ℎ𝑟×𝑤𝑟× 𝑐𝑟) at a feature 
scale 𝑙 for 𝐝∗𝑖  using RoIAlign [18], where ℎ𝑟, 𝑤𝑟 and 𝑐𝑟 are the height, 
width, and the number of channels after RoIAlign. We then define the 
RoI feature alignment loss 𝑅𝑜𝐼  as: 

RoI(𝐱𝑙𝑒,𝑖, 𝐱
𝑙
𝑎,𝑖) =

1
ℎ𝑟𝑤𝑟

𝐿
∑

𝑙=1

|

|

|

|𝐱𝑙𝑒,𝑖 − 𝐱𝑙𝑎,𝑖|
|

|

|

2
(2)

Eq. (2) assumes that 𝐱𝑙𝑒,𝑖 contributes equally at each scale 𝑙.

2.2. Soft feature assignment weight

Each feature at a different level contains different semantics: the 
lower layers contain more locality-oriented semantics, but the higher 
layer has high-level saliency of objectness [19]. From this insight, 
we additionally consider the dependency between object region and 
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Fig. 2. The sample weights assigned based on object size (√𝑊𝐻) are shown for the 
soft assignment method (top) and the hard assignment method (bottom).

feature level. In FPN [6,20,21], the hard assignment, which matches a 
RoI 𝑑∗ of width 𝑤 and height ℎ to the pyramid level 𝑙, is presented. 
Since this hard assignment does not leverage all feature scales, we 
present a soft weighting 𝑤𝑙

𝑖 by modeling the importance of each level 
to be a normal distribution: 

𝛷𝑙 (𝐝) = ∫

𝜌𝑙+1

𝜌𝑙
𝑁(𝜇 = 𝜇𝑖, 𝜎

2), 𝜌𝑙 =

⎧

⎪

⎨

⎪

⎩

−∞ if 𝑙 = 0
∞ if 𝑙 = 𝐿 + 1
𝑙 else 

𝜇𝑖 = 𝑙0 + log2

(
√

𝑤𝑖ℎ𝑖
𝐶𝑤ℎ

)

(3)

where 𝜇𝑖 is the mean of the feature level for the bounding box 𝐝𝑖. To 
evaluate this, we exploit the feature level assignment rule of FPN [6] 
since they design it with depth analysis of box patterns on generic 
object detections [22]. So, we also use the same canonical pre-training 
size 𝐶𝑤ℎ = 224. 𝑙0 is the base level to be tuned (in our experiment, we 
set it to 𝑙0(= 4)). 𝜎(= 1) and 𝜇(= 0) is a hyperparameters of standard 
deviation. We determined these parameters with the following sensitiv-
ity experiment, as shown in Table  6. By varying 𝜎 and 𝜇, we observed 
that the standard normal distribution parameters yielded the highest 
performance, leading us to adopt these values. Due to ∑𝐿

𝑙=1 𝛷
𝑙 = 1 of 

the area of probabilistic distribution, we use 𝛷𝑙 as the soft-assignment 
weight. Subsequently, we improve 𝐿𝑅𝑜𝐼  Eq. (2) by embedding 𝛷𝑙 as: 

SRoI(𝐱𝑙𝑒,𝑖, 𝐱
𝑙
𝑎,𝑖,𝐝

∗
𝑖 ) =

1
ℎ𝑟𝑤𝑟

𝑁
∑

𝑖=1

𝐿
∑

𝑙=1
𝛷𝑙(𝐝∗𝑖 )

|

|

|

|𝐱𝑙𝑒,𝑖 − 𝐱𝑙𝑎,𝑖|
|

|

|

2
(4)

As shown in Fig.  2, we compare sample weights of a sample between 
hard and soft assignments given a detection 𝐝𝑖. In the hard assignment, 
we simply determine its pyramid level by evaluating ⌊𝜇𝑖⌋ in Eq. (3). 
On the other hand, we compute 𝛷𝑙(𝐝𝑖) for the soft assignment. A box 
scales are rescaled by √ℎ𝑖𝑤𝑖. Horizontal and vertical axes represent a 
box scale and assigned weight ([0, 1]). As can be seen, we can exploit 
more pyramid levels using the soft assignment since the weight of a 
box is distributed across scales. This is obvious benefit in multi-scale 
KD since different feature semantic levels can be exploited. The more 
comparison between the assignments can be found in Table  5.

2.3. Detection headers and losses

The total detection loss for training a detector using our RAKD of 
Eq. (1) can be defined as: 
total = 𝑤RAKDRAKD + 2D + 3D, (5)

For 2D, we use the RPN and box classification regression losses of 
Faster R-CNN [16]. Followed by MonoRCNN++ [8], we compute 3D
by the predicted yaw angle and depth.
698 
3. Experiments

We apply our RAKD method for recent monocular-based 3D de-
tectors: MonoRCNN++ and MonoDETR detectors which designed for 
monocular-based camera detections.

3.1. Datasets

The KITTI dataset (7,481 training and 7,518 testing samples) is a 
standard 3D detection benchmark. The training set is split into 3,712 
training and 3,769 validation images [8]. Objects are categorized into 
Easy, Moderate, and Hard, based on 2D bounding box height, occlusion, 
and truncation. We report AP|R40 with IoU thresholds of 0.7 for cars 
and 0.5 for pedestrians/cyclists.

The Waymo dataset (52,386 training and 39,848 validation sam-
ples) is a large-scale benchmark for monocular 3D detection. The 
training set is sampled from 798 sequences at every third frame fol-
lowing the CaDDN sampling protocol [1]. Objects are categorized into 
LEVEL 1 and LEVEL 2 based on the number of LiDAR points. Here in 
the with LEVEL 2, an object is assigned with five or fewer points. We 
report mAP across three distance ranges (0–30 m, 30–50 m, and over 
50 m) using the official Waymo evaluation protocol.

3.2. Implementation details

All models are trained on two TITAN RTX 24 GB GPUs and an Intel 
Xeon Gold 6242 CPU. Given a pre-trained backbone (e.g., ResNet-50), 
we treat detectors with deeper or shallower backbones as expert or 
apprentice, respectively. The expert is the official pre-trained model 
from [8] without further tuning, while the apprentice is initialized 
with the same backbone weights but random FPN and heads. We apply 
RAKD from the expert to the apprentice. For experiments on KITTI, 
MonoRCNN++ is trained for 30k iterations with an initial learning 
rate of 0.01. The learning rate is decayed by a factor of 0.1 at 60%, 
80%, and 90% of a total training iterations, and we set 𝑤RA = 1.0. 
MonoDETR is trained for 135 epochs with a batch size of 8 and an 
initial learning rate of 0.000165. The learning rate decays at 90% epoch 
using the AdamW optimizer for stability. Baseline apprentices follow 
the same schedule without applying RAKD. On Waymo, MonoRCNN++ 
is trained for 30k iterations with batch of 128, an initial learning rate 
of 0.08, and weight decay reduced by 0.1 at 60%, 80%, and 90% of 
a total training iterations. We set 𝑤RA = 1.0 same as MonoRCNN++. 
MonoDETR is trained for 30 epoch with batch of 40 an initial learning 
rate of 0.0002, and weight decay reduced by 0.001 at 18, 26 epoch 
of the training and set 𝑤RA = 1.0 same as MonoRCNN++. Baseline 
apprentices follow the same schedule without RAKD. More precisely, 
during training for apprentice MonoDETR, we enforce region-aware 
feature alignment by generating ROIs from the ground-truth boxes and 
performing soft assignments using a canonical size 224 and level 5 
with each instance bbox sizes. ROI pooling is then applied on pyramid 
features (p2–p5) from both the apprentice and teacher, and a weighted 
per-box MSE loss is computed.

3.3. Comparison with 3D detectors

To compare with SOTA 3D detectors, we apply RAKD to MonoR-
CNN++ and MonoDETR on KITTI test dataset. We Using a ResNet-50 
expert and ResNet-18 apprentice, As shown in Table  2 our MonoR-
CNN++ and MonoDETR apprentices run in 29 ms and 40 ms, achieving 
55% and 35% speedups over the experts 45 ms and 54 ms runtimes, 
mainly due to reduced FLOPs. For accuracy, the apprentice MonoR-
CNN++ further improved AP3𝐷 scores cyclist classes overall when 
compared to the expert scores and MonoDETR further improved AP3𝐷
scores pedestrian classes overall when compared to the expert scores. 
This improvement shows the effect of our region-aware KD which can 
emphasize region than other detectors [24,26]. Although the accuracy 
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Table 2
Comparisons with state-of-the-art 3D detectors on the KITTI test set. Expert (E) and apprentice (A) detectors applying for RAKD are shown in the last rows. Latency measured by 
ours on the same single NVIDIA TITAN RTX is denoted with ∗. L and GF denote usage of LiDAR and GFLOPs.
 Approaches Backbone L Latency GF Car (AP3𝐷) Pedestrian (AP3𝐷) Cyclist (AP3𝐷)
 Easy Mod Hard Easy Mod Hard Easy Mod Hard 
 Monodle [23], CVPR21 DLA-34 23ms* 158 17.23 12.26 10.29 9.64 6.55 5.44 4.59 2.66 2.45  
 CaDDN [1], CVPR21 ResNet-101 ✓ 213ms* 985 19.17 13.41 11.46 12.87 8.14 6.76 7.00 3.41 3.30  
 MonoEF [24], TPAMI21 DLA-34 25ms* 87 21.29 13.87 11.71 4.27 2.79 2.21 1.80 0.92 0.71  
 MonoJSG [25], CVPR22 DLA-34 40ms – 24.69 16.14 13.64 11.02 7.49 6.41 5.45 3.21 2.57  
 MonoCon [26], CVPR22 DLA-34 26ms – 22.50 16.46 13.95 13.10 8.41 6.94 2.80 1.92 1.55  
 CMKD [2], ECCV22 ResNet-50 ✓ 99ms – 25.09 16.99 15.30 17.79 11.69 10.09 9.60 5.24 4.50  
 DEVIANT [27] , ECCV22 DLA-34 75ms* 535 21.88 14.46 11.89 13.43 8.65 7.69 5.05 3.13 2.59  
 MonoRCNN++ (E), WACV23 ResNet-50 45ms* 216 20.08 13.72 11.34 12.26 7.90 6.62 3.17 1.81 1.75  
 MonoRCNN++ w/t RAKD (A) ResNet-18 29ms* 138 18.45 11.71 9.32 12.25 7.99 6.66 3.61 2.16 1.76  
 MonoDETR (E), ICCV23 ResNet-50 54ms* 108 22.78 14.97 12.23 13.50 8.64 7.12 6.19 3.91 3.20  
 MonoDETR w/t RAKD (A) ResNet-18 40ms* 71 19.23 12.57 10.07 13.74 8.83 7.31 3.44 2.09 1.75  
Table 3
Detailed comparisons of detectors with/without our RAKD on the Waymo val set. We use 3D AP (𝐼𝑜𝑈 > 0.5) as a standard metric for all classes. All the scores of the detectors 
are evaluated by our reimplementation.
 Difficulty Approaches (Backbone) Expert/Apprentice Vehicle AP3𝐷 [%] ↑ Pedestrian AP3𝐷 [%] ↑ Cyclist AP3𝐷 [%] ↑
 Overall 0–30 30–50 50-∞ Overall 0–30 30–50 Overall 0–30 30-50 
 

LEVEL 1

MonoRCNN++ [ResNet-50] Expert 11.05 25.90 4.23 0.89 5.40 13.92 1.74 3.79 8.37 0.10  
 MonoRCNN++ [ResNet-18] Apprentice 9.12 23.01 2.91 0.64 4.34 11.51 1.24 0.77 2.22 0.00  
 MonoRCNN++ [ResNet-18] + RAKD Apprentice 9.15 22.39 3.43 0.57 5.29 13.24 1.86 1.27 3.69 0.00  
 MonoDETR [ResNet-50] Expert 9.04 24.92 3.84 0.31 5.73 15.96 2.43 5.75 15.75 0.55  
 MonoDETR [ResNet-18] Apprentice 7.81 22.06 3.05 0.28 4.90 13.97 1.84 4.92 12.81 0.87  
 MonoDETR [ResNet-18] + RAKD Apprentice 8.02 21.81 3.46 0.33 4.92 14.38 1.63 5.07 14.16 0.22  
 

LEVEL 2

MonoRCNN++ [ResNet-50] Expert 10.31 25.79 4.08 0.77 4.91 13.70 1.63 3.65 8.32 0.09  
 MonoRCNN++ [ResNet-18] Apprentice 8.50 22.92 2.80 0.55 3.95 11.33 1.16 0.74 2.21 0.00  
 MonoRCNN++ [ResNet-18] + RAKD Apprentice 8.52 22.30 3.43 0.57 4.81 13.03 1.74 1.23 3.68 0.00  
 MonoDETR [ResNet-50] Expert 8.47 24.83 3.71 0.27 5.21 15.72 2.28 5.53 15.67 0.52  
 MonoDETR [ResNet-18] Apprentice 7.32 21.98 2.94 0.24 4.46 13.76 1.72 4.73 12.75 0.82  
 MonoDETR [ResNet-18] + RAKD Apprentice 7.51 21.73 3.34 0.28 4.48 14.16 1.52 4.88 14.09 0.21  
Table 4
Comparisons with the recent PKD, SemCKD and GKD-BMFI methods on the KITTI validation set. The best results and second-best scores are highlighted in bold and underlined 
(except for expert). E and A also denote expert and apprentice detectors. All the latency is measured on the same machine. Avg. represents the score averaged for all classes and 
occlusion levels. 
 3D Detector Backbone Methods Car (AP3𝐷) Pedestrian (AP3𝐷) Cyclist (AP3𝐷) Avg. Latency 
 Easy Mod Hard Easy Mod Hard Easy Mod Hard  
 

MonoRCNN++

ResNet-50 (E) Vanilla 19.13 14.69 12.42 6.85 5.58 4.58 4.38 2.48 2.57 8.08 45ms  
 

ResNet-18 (A)

Vanilla 17.71 13.19 10.43 7.05 5.09 3.94 2.70 1.52 1.29 6.99 29ms  
 PKD [12] 19.66 13.40 10.98 6.65 4.81 4.29 3.78 2.11 2.19 7.54 29ms  
 SemCKD [13] 17.96 12.63 10.39 8.03 5.97 4.66 2.38 1.33 1.26 7.18 29ms  
 GKD-BMFI [13] 18.79 12.92 10.56 9.41 6.68 5.26 1.78 1.46 1.14 7.56 29ms  
 RAKD (Ours) 20.75 14.45 12.02 8.56 6.19 5.02 3.59 1.78 1.81 8.24 29ms  
 

MonoDETR

ResNet-50 (E) Vanilla 27.69 19.53 16.22 10.05 7.06 5.51 8.79 4.46 4.06 11.49 54ms  
 

ResNet-18 (A)

Vanilla 22.24 16.23 13.48 9.34 6.82 5.49 6.54 3.48 3.47 9.68 40ms  
 PKD 25.06 17.95 14.94 9.71 7.33 5.70 9.03 4.52 4.38 10.96 40ms  
 SemCKD 24.14 16.67 13.82 8.86 5.95 5.22 8.68 4.49 4.29 10.24 40ms  
 GKD-BMFI 25.14 17.12 14.11 7.78 5.90 4.85 5.77 2.48 2.51 9.52 40ms  
 RAKD (Ours) 24.19 16.79 13.77 10.51 7.32 5.87 8.75 4.55 4.15 10.66 40ms  
of our apprentice detectors is somewhat lower than other recent SOTA 
detectors [2,27], our detectors achieve competitive accuracy with much 
lower latency and FLOPs. These comparison results clearly show the 
effect of our RAKD on recent 3D detectors. To further evaluate the 
effectiveness of RAKD, we apply it to MonoRCNN++ and MonoDETR on 
the Waymo validation dataset. As shown in Table  3, applying RAKD to 
MonoRCNN++ results in consistently higher accuracy across all classes 
compared to the apprentice model. Similarly, for MonoDETR, RAKD im-
proves performance over the apprentice model in all classes except for 
pedestrians. These results demonstrate that RAKD effectively enhances 
3D detection accuracy across different architectures, reinforcing its 
ability to transfer knowledge efficiently while maintaining competitive 
performance.
699 
3.4. Comparison of knowledge distillation

In addition, our RAKD methods are compared with other recent KD 
methods on the KITTI validation set as shown in Table  4. We adopt 
PKD [12], SemCKD [13] and GKD-BMFI [14] since they can distill 
multi-scale intermediate features. For applying the SemCKD method 
for those detectors, we transform each stage feature output (𝑃 𝑙

𝑒  and 
𝑃 𝑙
𝑎) to a tensor with the same dimensionality of 𝑇𝑎 and 𝑇𝑒 by using 
projection and reshape operations. We then evaluate the self-similarity 
of each stage output tensor by using dot product and MLP operations. 
Then, we apply a soft-max function for the MLP outputs at layer 𝑙 of 
𝑇𝑎 and 𝑇𝑒 to generate attention-based weights. We use this attention 
as a layer-wise weight when evaluating Fit of Eq. (1). In addition, 
for implementing PKD, we reshape 𝑃 𝑙 and 𝑃 𝑙 of size ℎ × 𝑤 × 𝑐  to 
𝑒 𝑎 𝑙 𝑙 𝑙
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Table 5
Ablation study on the KITTI validation set. 𝑅𝑜𝐼 represents RoI feature alignment loss, HFA represents hard feature assignment and SFA represents soft feature assignment (𝑆𝑅𝑜𝐼 ). 
The best results are highlighted in bold, and the second-best results are underlined (except for expert).
 Approaches Methods Car (AP3𝐷) Pedestrian (AP3𝐷) Cyclist (AP3𝐷) avg.  
 𝐿𝑅𝑂𝐼 𝐻𝐹𝐴 𝑆𝐹𝐴 Easy Mod Hard Easy Mod Hard Easy Mod Hard  
 ResNet-50 (E) 19.13 14.69 12.42 6.85 5.58 4.58 4.38 2.48 2.57 8.08 
 ResNet-18 (A) 17.71 13.19 10.43 7.05 5.09 3.94 2.70 1.52 1.29 6.99 
 
RAKD

✓ 19.99 14.34 11.91 7.68 5.69 4.53 3.78 1.97 1.94 7.98 
 ✓ ✓ 18.80 13.64 11.47 9.13 6.81 5.25 3.39 1.83 1.80 8.01 
 ✓ ✓ 20.75 14.45 12.02 8.56 6.19 5.02 3.59 1.78 1.81 8.24 
 Adaptive alignment – – – 18.28 13.58 11.42 7.29 5.47 4.22 4.89 2.85 2.81 7.87 
 PKD 19.66 13.40 10.98 6.65 4.81 4.29 3.78 2.11 2.19 7.54 
 PKD w/t RAKD ✓ ✓ 20.81 14.05 11.65 8.07 6.03 4.76 4.03 2.03 1.99 8.16 
 SemCKD 17.96 12.63 10.39 8.03 5.97 4.66 2.38 1.33 1.26 7.18 
 SemCKD w/t RAKD ✓ ✓ 19.37 13.91 11.59 8.71 6.18 4.91 4.60 2.36 2.25 8.21 
 GKD-BMFI 18.79 12.92 10.56 9.41 6.68 5.26 1.78 1.46 1.14 7.56 
 GKD-BMFI w/t RAKD ✓ ✓ 19.69 13.83 11.41 9.99 7.05 5.59 4.94 2.82 2.37 8.63 
Table 6
Comparisons with the sensitive parameter to normal distribution on the KITTI validation set. The best results scores are highlighted in bold. Avg. represents the score averaged 
for all classes and occlusion levels. 
 Method Parameter Value Car (AP3𝐷) Pedestrian (AP3𝐷) Cyclist (AP3𝐷) Avg. 
 Easy Mod Hard Easy Mod Hard Easy Mod Hard  
 

RAKD

Vanilla (𝜇 = 0, 𝜎 = 1) 20.75 14.45 12.02 8.56 6.19 5.02 3.59 1.78 1.81 8.24 
 −0.4 18.79 13.00 10.73 6.80 4.31 4.07 4.46 2.15 2.22 7.39 
 

𝜇
−0.2 18.02 13.18 11.26 8.37 6.26 4.95 3.36 1.79 1.83 8.07 

 +0.2 19.20 14.19 12.03 7.60 5.33 4.61 4.99 2.73 2.67 8.15 
 +0.4 19.30 14.38 12.02 7.57 5.97 4.61 4.99 2.16 2.21 7.66 
 

𝜎
0.5 18.29 13.42 11.30 7.89 6.00 4.71 2.74 1.42 1.26 7.44 

 2.0 18.31 13.59 11.38 8.54 6.22 4.76 4.04 2.20 2.02 7.89 
Fig. 3. Qualitative comparison between expert and apprentice MonoRCNN++ detectors with our RAKD. The left image represents the 3D box coordinates projected onto a 2D 
plane image, and the right image shows the position of the 3D object in a BEV. The green, pink, purple and orange lines show the GT and predicted car, pedestrian and cyclist 
detection results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝑐𝑙×ℎ𝑙⋅𝑤𝑙. Then, we compute the Pearson correlation coefficient between 
the reshaped vectors with the mean and covariance of each vector. 
Then, we perform FPN distillation with the normalized coefficients. To 
implement GKD-BMFI, the feature outputs (𝑃 𝑙

𝑒  and 𝑃 𝑙
𝑎) are utilized to 

ensure that the multi-scale intermediate features are properly aligned. 
Subsequently, two sets of CAM masks, one from the expert network and 
the other from the apprentice, are obtained by averaging the feature 
maps across channels 𝑐𝑙 and applying a sigmoid function. Following the 
methodology outlined in the GKD-BMFI paper, a Gaussian mask is gen-
erated based on the bounding box 𝐝∗ with 𝑤𝑙 and ℎ𝑙. Table  4 shows the 
comparison results of KD methods. We also present the accuracy scores 
of each vanilla apprentice detector. All the KD methods achieve more 
precision gains than the vanilla detector. In most metrics, our RAKD 
shows the best precision rates. In particular, In MonoRCNN++ our 
RAKD is very effective for improving more difficult class detection such 
as Car in Hard difficulty and Pedestrians. For MonoDETR our RAKD 
significantly boosts pedestrian detection, resulting in a balanced overall 
performance. These results show the superiority of our region-aware KD 
method.
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3.5. Ablation study

Table  5 shows the effect of each method. For this ablation, we apply 
our method one by one. Since 𝑆𝑅𝑜𝐼  of Eq.  (4) consists of 𝑅𝑜𝐼  of Eq. (2) 
and (3), we evaluate its effect separately. We also compare the hard-
level feature assignment (HFA) of [6] by using 𝜇𝑖 of Eq. (3). In the 
ablation study of RAKD, we know that the hard assignment does not 
work well for 3D KD. On the other hand, our RAKD provides more gain 
than HFA.

We also compare our RAKD with learnable assignments (Adaptive 
alignment) paradigm. To implement this, we modified the network so 
that the FPN assignment levels are produced as logits. Initially, all 
weights for the FPN levels were set to 1∕𝐿, and then they were learned 
by minimizing the loss. The experimental results for this adaptive 
alignment are presented in Table  5 as adaptive alignment. As shown, 
the performance obtained using these learnable assignments exhibits 
lower accuracy than that achieved with our normal distribution–based 
alignment. In addition, we apply this ablation study to other KD meth-
ods to investigate the flexibility of our method. We can improve the 
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Table 7
Comparison of RAKD performance using different probabilistic models. Normal, Laplace, Uniform denote Normal distribution, Laplace distribution, Uniform distribution.
 Method Prob. Model Car (AP3𝐷) Pedestrian (AP3𝐷) Cyclist (AP3𝐷) Avg. 
 Easy Mod Hard Easy Mod Hard Easy Mod Hard  
 
RAKD

Normal 20.75 14.45 12.02 8.56 6.19 5.02 3.59 1.78 1.81 8.24 
 Laplace 17.03 13.07 10.32 7.79 5.55 4.60 4.68 2.31 1.96 7.49 
 Uniform 18.80 13.64 11.47 9.13 6.81 5.25 3.39 1.83 1.80 8.01 
AP scores of PKD, SemCKD and GKD-BMFI by 8.22%, 14.34% and 
14.15% on average over all classes and levels. These results show that 
our RAKD has high compatibility with other KD methods. Furthermore, 
we conduct a sensitive analysis by changing the parameters of the 
normal distribution. From this results, we confirmed that the normal 
distribution with 𝜎 = 1, 𝜇 = 0 achieves the best gains, and fit them for 
other RAKD evaluation.

Also, we compared performance with normal distribution, laplace 
distribution, and uniform distribution in Table  7 to confirm that normal 
distribution is most accurate and most suitable for the experiment. The 
results confirm that the normal distribution achieves the highest accu-
racy and is the most suitable choice for this experiment. This is because 
the normal distribution provides a smooth and balanced weighting 
across feature pyramid levels, effectively capturing gradual variations 
in object scales, whereas the Laplace distribution tends to overempha-
size central values, and the uniform distribution is inefficient with equal 
weight allocation.

3.6. Qualitative comparison

Fig.  3 visualizes both the 2D projections of 3D bounding boxes and 
their BEV representations. Our RAKD method outperforms Expert and 
Apprentice models in detecting distant cars (a, b) due to the robust 
SROI method, which handles geometric variations. As shown in (c), 
it also detects overlapping pedestrians and cyclists, showcasing its 
robustness with occluded objects. Additionally, as shown in (d), the 
accurate detection of distant cyclists highlights the effective of our 
knowledge distillation process.

4. Conclusion

Despite advancements in knowledge distillation [2,28–30], mono
cular-based 3D detection remains underexplored. To address this, we 
propose a novel region-aware KD (RAKD) method that leverages multi-
scale region features with a soft weighting mechanism and soft RoI 
feature alignment loss for precise KD. Using RAKD, we implement on 
MonoRCNN++ and MonoDETR to demonstrate significant improve-
ments in precision and latency compared to SOTA 3D detectors. Our 
method also outperforms recent KD approaches and enhances their 
performance when integrated. We establish RAKD as a strong baseline 
for monocular-based 3D KD, offering efficient and accurate 3D object 
detection.
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