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Recent knowledge distillation (KD) for 3D object detection often involves costly LIDAR or multi-camera data.
We focus on monocular camera-based 3D detectors, where missing 3D cues cause large feature gaps. To address
this, we propose region-aware KD, aligning object features by matching their scales and pyramid levels. We
introduce a probabilistic distribution to weigh region importance. Applied to MonoRCNN++ and MonoDETR
on the KITTI and Waymo dataset, our approach achieves reduced complexity and strong performance with a
lightweight backbone. Compared to recent KD methods, ours excels in both effectiveness and efficiency.

1. Introduction

3D object detection is to identify and localize objects in a 3D
coordinate from sensor data. This task can be roughly categorized into
LiDAR-based 3D detection using point clouds and camera-based 3D
object detection using images. Due to the usage of depth features,
the LiDAR-based detector produces more accurate results than the
image-based detector. However, it is costly and constrained rather in in-
stallation. Therefore, there are many efforts to enhance the 3D accuracy
of camera-based detectors. For instance, CADDN [1] utilizes a heavy
backbone (ResNet-101) to generate categorical depth distribution and
accurate 3D feature maps. However, these methods tend to use high
computational resources due to the complexity of CNN.

To mitigate this complexity of camera-based 3D object detection,
knowledge distillation (KD) methods for 3D object detection are devel-
oped. CMKD [2] performs KD to transfer the knowledge of a LiDAR
model to the camera detector by aligning bird’s eye view (BEV) feature
maps. BEVDistill [3] also aligns BEV feature maps between a LiDAR
expert and multi-camera apprentice models by focusing the distillation
of the foreground region more. However, these methods require dense
point clouds in a whole scene. Recently, FD3D [4] presents the KD
method between multi-camera-based detectors. It performs KD on both
perspective view and BEV using deformable attention. Even though it
shows promising results, the extra cost of using multi-view sensory data
is a burden, emphasizing the need for monocular camera-based KD. As
shown in Table 1, monocular camera-based KD remains underexplored.

Consistently, a more cost-efficient KD method can transfer the
knowledge of an expert detector to an apprentice detector on a monoc-
ular camera. The main bottleneck of this monocular-based KD is limited
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geometric features such as depth cue. As mentioned in [5], the depth
is consistently associated with object 2D locality. The absence of
depth features also accelerates the knowledge gaps between expert and
apprentice detectors due to the higher dependency on a used feature
extractor.

To minimize the knowledge gap between 3D detectors, we propose
a region-aware knowledge distillation (RAKD) on monocular-camera-
based 3D detection. Since object locality is the main factors to affect
3D precision usually, we transfer the knowledge to a target detector.
Our region-aware KD is based on a region-of-interest (Rol) feature
alignment extracted from detectors with different knowledge. To han-
dle object geometric variation, it is necessary to employ multi-scale
feature maps [6,7] and select a suitable feature-scale level of extracting
an object feature. However, we observe that the one-to-one alignment
between a Rol feature pair extracted at a single scale does not improve
an apprentice detector dramatically. Therefore, we align a region fea-
ture pair across a whole feature scale. Since an appropriate feature
scale is also relevant to object scale [7], we propose a soft assignment
weight that models the geometrical relationship between feature pyra-
mid scales and object regions as a normal distribution. As shown in
Table 7, we compared normal, laplace, and uniform distributions, and
observed that the normal distribution consistently achieved the highest
average performance. This result led us to adopt the normal distribution
for modeling the assignment weight. This is likely due to its smooth,
bell-shaped curve, which provides a more balanced weighting across
feature pyramid levels compared to the sharper peak of the Laplace
distribution or the equal weighting of the Uniform distribution. We then
use the distribution from the proposed soft assignment to compute the
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Fig. 1. The overall structure of our region-aware knowledge distillation for monocular-based 3D detection.

Table 1
Comparison sensor types of KD methods for 3D object detection: ES and AS mean expert
and apprentice sensor. L, C, and MC are LiDAR, a monocular camera, and multiple
cameras.

Methods ES AS Additional network
CMKD [2] L C -

BEVDistill [3] L MC -

X3KD [15] L MC Segmentation network
FD3D [4] MC MC KD head

RAKD (Ours) C C -

importance of a region feature per scale and use the score as coefficients
of our multi-scale region feature alignment. As a result, this region-
aware KD can transfer the expert knowledge of object locality and
semantics across all feature scales.

To sum up, the main contributions of this work are:

» Knowledge distillation which can be applied for monocular-based
3D object detection.

» Region-aware KD to measure the geometrical relation score of
object locality and feature pyramid scales and exploit it for multi-
scale Rol feature alignment.

+ Soft assignment weight that leverages additional pyramid levels,
adapted to each object’s scale, to align different semantic feature
levels.

We evaluate our RAKD method by incorporating it into recent
3D object detector, MonoRCNN++ [8] and MonoDETR [9]. On the
KITTI [10] and Waymo dataset [11], our apprentice detector increases
detection speed by 55% compared to their experts. In addition, we
compare our RAKD with other state-of-the-art KD methods: PKD [12],
SemCKD [13] and GKD-BMFI [14]. Compared to PKD, SemCKD and
GKD-BMF]I, our method provides more detection gains by 9%, 15% and
9% in MonoRCNN++.

2. Proposed region-aware knowledge distillation method

To address the knowledge discrepancy arising from the lack of
3D geometric features in a monocular camera domain, we propose
a Region-Aware Knowledge Distillation (RAKD) method between ex-
pert T, and apprentice 7, detectors. The overall framework of the
proposed RAKD is illustrated in Fig. 1. Let d* (x,y,w,h) be a
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bounding box, where x, y, w and h are the top-left positions, width
and height. We also denote d a predicted bounding box from the region
proposal network [16]. p € RC is a predicted confidences, where C
is the cardinality of object classes. Given an input image, we extract
multi-scale feature maps {P'}- ,P' € RH'>XW'XC" from a backbone
network(e.g. ResNet50,/18 with FPN), where L is the number of feature
pyramid levels, and H!, W', and C' is the height, width, and the
number of channels of P'.

We define a region-aware KD loss to transfer the knowledge T, to

T, as follows:

@

Lraxkp = WraLsrot + WritLrit + WHinLHin

where wga, wp and wy;, are balancing terms that adjust the magni-
tude of each loss. Ly;, is the KL divergence between p;; and p; [17].
Ly, is a FitNet KD loss between P! and P!. However, the Lz, does
not transfer the intermediate feature knowledges of P! and the object
geometrical knowledge d*. Therefore, we present a region-aware KD
to minimize the geometrical knowledge discrepancy of T, and 7, on
multi-scale features.

2.1. Region-aware feature alignment

To facilitate knowledge transfer of the object geometric locality,
we focus on aligning object region features of 7, and 7, given d* and
{P'}[ . Let D = {d,p;}¥ be a set of GT bounding boxes. Along the
feature pyramids { P!} and {P!}[ of T, and T,, we then can extract
an object region feature x/ ; and x! ; of the size (h, Xw, Xc,) at a feature
scale / for d} using RolAlign [18], where h,, w, and ¢, are the height,
width, and the number of channels after RolAlign. We then define the

Rol feature alignment loss Ly,; as:

| &
" hauw, Zf
Eq. (2) assumes that xi ; contributes equally at each scale .

2

(2

1ol ! !
Lror(X, ;> X, ;) X, =X,

2.2. Soft feature assignment weight

Each feature at a different level contains different semantics: the
lower layers contain more locality-oriented semantics, but the higher
layer has high-level saliency of objectness [19]. From this insight,
we additionally consider the dependency between object region and
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feature level. In FPN [6,20,21], the hard assignment, which matches a
Rol d* of width w and height & to the pyramid level /, is presented.
Since this hard assignment does not leverage all feature scales, we
present a soft weighting wl’. by modeling the importance of each level
to be a normal distribution:
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where y; is the mean of the feature level for the bounding box d;. To
evaluate this, we exploit the feature level assignment rule of FPN [6]
since they design it with depth analysis of box patterns on generic
object detections [22]. So, we also use the same canonical pre-training
size C,;, = 224. I, is the base level to be tuned (in our experiment, we
set it to (= 4)). o(= 1) and u(= 0) is a hyperparameters of standard
deviation. We determined these parameters with the following sensitiv-
ity experiment, as shown in Table 6. By varying ¢ and p, we observed
that the standard normal distribution parameters yielded the highest
performance, leading us to adopt these values. Due to Zle @' =1 of
the area of probabilistic distribution, we use @' as the soft-assignment
weight. Subsequently, we improve Lg,; Eq. (2) by embedding @' as:

Hi =1 +10g2<

1NL
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As shown in Fig. 2, we compare sample weights of a sample between
hard and soft assignments given a detection d;. In the hard assignment,
we simply determine its pyramid level by evaluating |y;] in Eq. (3).
On the other hand, we compute @'(d;) for the soft assignment. A box
scales are rescaled by 1/h;w;. Horizontal and vertical axes represent a
box scale and assigned weight ([0, 1]). As can be seen, we can exploit
more pyramid levels using the soft assignment since the weight of a
box is distributed across scales. This is obvious benefit in multi-scale
KD since different feature semantic levels can be exploited. The more
comparison between the assignments can be found in Table 5.

2.3. Detection headers and losses

The total detection loss for training a detector using our RAKD of
Eq. (1) can be defined as:

)

For L, we use the RPN and box classification regression losses of
Faster R-CNN [16]. Followed by MonoRCNN++ [8], we compute L3y,
by the predicted yaw angle and depth.

Lioral = WrakpLrakp + Lop + L3p,
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3. Experiments

We apply our RAKD method for recent monocular-based 3D de-
tectors: MonoRCNN++ and MonoDETR detectors which designed for
monocular-based camera detections.

3.1. Datasets

The KITTI dataset (7,481 training and 7,518 testing samples) is a
standard 3D detection benchmark. The training set is split into 3,712
training and 3,769 validation images [8]. Objects are categorized into
Easy, Moderate, and Hard, based on 2D bounding box height, occlusion,
and truncation. We report AP|R40 with IoU thresholds of 0.7 for cars
and 0.5 for pedestrians/cyclists.

The Waymo dataset (52,386 training and 39,848 validation sam-
ples) is a large-scale benchmark for monocular 3D detection. The
training set is sampled from 798 sequences at every third frame fol-
lowing the CaDDN sampling protocol [1]. Objects are categorized into
LEVEL 1 and LEVEL 2 based on the number of LiDAR points. Here in
the with LEVEL 2, an object is assigned with five or fewer points. We
report mAP across three distance ranges (0-30 m, 30-50 m, and over
50 m) using the official Waymo evaluation protocol.

3.2. Implementation details

All models are trained on two TITAN RTX 24 GB GPUs and an Intel
Xeon Gold 6242 CPU. Given a pre-trained backbone (e.g., ResNet-50),
we treat detectors with deeper or shallower backbones as expert or
apprentice, respectively. The expert is the official pre-trained model
from [8] without further tuning, while the apprentice is initialized
with the same backbone weights but random FPN and heads. We apply
RAKD from the expert to the apprentice. For experiments on KITTI,
MonoRCNN++ is trained for 30k iterations with an initial learning
rate of 0.01. The learning rate is decayed by a factor of 0.1 at 60%,
80%, and 90% of a total training iterations, and we set wg, = 1.0.
MonoDETR is trained for 135 epochs with a batch size of 8 and an
initial learning rate of 0.000165. The learning rate decays at 90% epoch
using the AdamW optimizer for stability. Baseline apprentices follow
the same schedule without applying RAKD. On Waymo, MonoRCNN++
is trained for 30k iterations with batch of 128, an initial learning rate
of 0.08, and weight decay reduced by 0.1 at 60%, 80%, and 90% of
a total training iterations. We set wg, = 1.0 same as MonoRCNN++.
MonoDETR is trained for 30 epoch with batch of 40 an initial learning
rate of 0.0002, and weight decay reduced by 0.001 at 18, 26 epoch
of the training and set wg, = 1.0 same as MonoRCNN++. Baseline
apprentices follow the same schedule without RAKD. More precisely,
during training for apprentice MonoDETR, we enforce region-aware
feature alignment by generating ROIs from the ground-truth boxes and
performing soft assignments using a canonical size 224 and level 5
with each instance bbox sizes. ROI pooling is then applied on pyramid
features (p2—p5) from both the apprentice and teacher, and a weighted
per-box MSE loss is computed.

3.3. Comparison with 3D detectors

To compare with SOTA 3D detectors, we apply RAKD to MonoR-
CNN++ and MonoDETR on KITTI test dataset. We Using a ResNet-50
expert and ResNet-18 apprentice, As shown in Table 2 our MonoR-
CNN++ and MonoDETR apprentices run in 29 ms and 40 ms, achieving
55% and 35% speedups over the experts 45 ms and 54 ms runtimes,
mainly due to reduced FLOPs. For accuracy, the apprentice MonoR-
CNN++ further improved AP;; scores cyclist classes overall when
compared to the expert scores and MonoDETR further improved AP5,,
scores pedestrian classes overall when compared to the expert scores.
This improvement shows the effect of our region-aware KD which can
emphasize region than other detectors [24,26]. Although the accuracy



S.-G. Cheon et al.

Table 2

ICT Express 11 (2025) 696-702

Comparisons with state-of-the-art 3D detectors on the KITTI test set. Expert (E) and apprentice (A) detectors applying for RAKD are shown in the last rows. Latency measured by
ours on the same single NVIDIA TITAN RTX is denoted with %. L and GF denote usage of LiDAR and GFLOPs.

Approaches Backbone L Latency GF Car (AP;p) Pedestrian (AP;,) Cyclist (AP;p)

Easy Mod Hard Easy Mod Hard Easy Mod Hard
Monodle [23], CVPR21 DLA-34 23ms* 158 17.23 12.26 10.29 9.64 6.55 5.44 4.59 2.66 2.45
CaDDN [1], CVPR21 ResNet-101 v 213ms* 985 19.17 13.41 11.46 12.87 8.14 6.76 7.00 3.41 3.30
MonoEF [24], TPAMI21 DLA-34 25ms* 87 21.29 13.87 11.71 4.27 2.79 2.21 1.80 0.92 0.71
MonoJSG [25], CVPR22 DLA-34 40ms - 24.69 16.14 13.64 11.02 7.49 6.41 5.45 3.21 2.57
MonoCon [26], CVPR22 DLA-34 26ms - 22.50 16.46 13.95 13.10 8.41 6.94 2.80 1.92 1.55
CMKD [2], ECCV22 ResNet-50 v 99ms - 25.09 16.99 15.30 17.79 11.69 10.09 9.60 5.24 4.50
DEVIANT [27] , ECCV22 DLA-34 75ms* 535 21.88 14.46 11.89 13.43 8.65 7.69 5.05 3.13 2.59
MonoRCNN++ (E), WACV23 ResNet-50 45ms* 216 20.08 13.72 11.34 12.26 7.90 6.62 3.17 1.81 1.75
MonoRCNN++ w/t RAKD (A) ResNet-18 29ms* 138 18.45 11.71 9.32 12.25 7.99 6.66 3.61 2.16 1.76
MonoDETR (E), ICCV23 ResNet-50 54ms* 108 22.78 14.97 12.23 13.50 8.64 7.12 6.19 3.91 3.20
MonoDETR w/t RAKD (A) ResNet-18 40ms* 71 19.23 12.57 10.07 13.74 8.83 7.31 3.44 2.09 1.75

Table 3

Detailed comparisons of detectors with/without our RAKD on the Waymo val set. We use 3D AP (IoU > 0.5) as a standard metric for all classes. All the scores of the detectors

are evaluated by our reimplementation.

Difficulty Approaches (Backbone) Expert/Apprentice Vehicle AP;;, [%] t Pedestrian AP;, [%] 1 Cyclist AP;;, [%] 1
Overall  0-30 30-50 50-0c  Overall 0-30 30-50 Overall  0-30 30-50

MonoRCNN++ [ResNet-50] Expert 11.05 25.90 4.23 0.89 5.40 1392 1.74 3.79 8.37 0.10
MonoRCNN++ [ResNet-18] Apprentice 9.12 23.01 2.91 0.64 4.34 11.51 1.24 0.77 2.22 0.00

LEVEL 1 MonoRCNN++ [ResNet-18] + RAKD  Apprentice 9.15 22.39  3.43 0.57 5.29 13.24 1.86 1.27 3.69 0.00
MonoDETR [ResNet-50] Expert 9.04 2492 3.84 0.31 5.73 1596  2.43 5.75 15.75  0.55
MonoDETR [ResNet-18] Apprentice 7.81 22.06 3.05 0.28 4.90 13.97 1.84 4.92 12.81 0.87
MonoDETR [ResNet-18] + RAKD Apprentice 8.02 21.81 3.46 0.33 4.92 14.38 1.63 5.07 1416  0.22
MonoRCNN++ [ResNet-50] Expert 10.31 25.79 4.08 0.77 4.91 13.70 1.63 3.65 8.32 0.09
MonoRCNN++ [ResNet-18] Apprentice 8.50 22,92 2.80 0.55 3.95 11.33  1.16 0.74 2.21 0.00

LEVEL 2 MonoRCNN++ [ResNet-18] + RAKD  Apprentice 8.52 22,30 3.43 0.57 4.81 13.03 1.74 1.23 3.68 0.00
MonoDETR [ResNet-50] Expert 8.47 24.83 3.71 0.27 5.21 15.72 2.28 5.53 15.67 0.52
MonoDETR [ResNet-18] Apprentice 7.32 21.98 294 0.24 4.46 13.76  1.72 4.73 12.75  0.82
MonoDETR [ResNet-18] + RAKD Apprentice 7.51 21.73 3.34 0.28 4.48 1416  1.52 4.88 14.09 0.21

Table 4

Comparisons with the recent PKD, SemCKD and GKD-BMFI methods on the KITTI validation set. The best results and second-best scores are highlighted in bold and underlined
(except for expert). E and A also denote expert and apprentice detectors. All the latency is measured on the same machine. Avg. represents the score averaged for all classes and

occlusion levels.

3D Detector Backbone Methods Car (AP;)) Pedestrian (AP;;) Cyclist (AP;,) Avg. Latency
Easy Mod Hard Easy Mod Hard Easy Mod Hard
ResNet-50 (E) Vanilla 19.13 14.69 12.42 6.85 5.58 4.58 4.38 2.48 2.57 8.08 45ms
Vanilla 17.71 13.19 10.43 7.05 5.09 3.94 2.70 1.52 1.29 6.99 29ms
MonoRCNN++ PKD [12] 19.66 13.40 10.98 6.65 4.81 4.29 3.78 2.11 2.19 7.54 29ms
ResNet-18 (A) SemCKD [13] 17.96 12.63 10.39 8.03 5.97 4.66 2.38 1.33 1.26 7.18 29ms
GKD-BMFI [13] 18.79 12.92 10.56 9.41 6.68 5.26 1.78 1.46 1.14 7.56 29ms
RAKD (Ours) 20.75 14.45 12.02 8.56 6.19 5.02 3.59 1.78 1.81 8.24 29ms
ResNet-50 (E) Vanilla 27.69 19.53 16.22 10.05 7.06 5.51 8.79 4.46 4.06 11.49 54ms
Vanilla 22.24 16.23 13.48 9.34 6.82 5.49 6.54 3.48 3.47 9.68 40ms
MonoDETR PKD 25.06 17.95 14.94 9.71 7.33 5.70 9.03 4.52 4.38 10.96 40ms
ResNet-18 (A) SemCKD 24.14 16.67 13.82 8.86 5.95 5.22 8.68 4.49 4.29 10.24 40ms
GKD-BMFI 25.14 17.12 14.11 7.78 5.90 4.85 5.77 2.48 2.51 9.52 40ms
RAKD (Ours) 24.19 16.79 13.77 10.51 7.32 5.87 8.75 4.55 4.15 10.66 40ms

of our apprentice detectors is somewhat lower than other recent SOTA
detectors [2,27], our detectors achieve competitive accuracy with much
lower latency and FLOPs. These comparison results clearly show the
effect of our RAKD on recent 3D detectors. To further evaluate the
effectiveness of RAKD, we apply it to MonoRCNN++ and MonoDETR on
the Waymo validation dataset. As shown in Table 3, applying RAKD to
MonoRCNN++ results in consistently higher accuracy across all classes
compared to the apprentice model. Similarly, for MonoDETR, RAKD im-
proves performance over the apprentice model in all classes except for
pedestrians. These results demonstrate that RAKD effectively enhances
3D detection accuracy across different architectures, reinforcing its
ability to transfer knowledge efficiently while maintaining competitive
performance.
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3.4. Comparison of knowledge distillation

In addition, our RAKD methods are compared with other recent KD
methods on the KITTI validation set as shown in Table 4. We adopt
PKD [12], SemCKD [13] and GKD-BMFI [14] since they can distill
multi-scale intermediate features. For applying the SemCKD method
for those detectors, we transform each stage feature output (Pel and
P!) to a tensor with the same dimensionality of T, and 7, by using
projection and reshape operations. We then evaluate the self-similarity
of each stage output tensor by using dot product and MLP operations.
Then, we apply a soft-max function for the MLP outputs at layer / of
T, and T, to generate attention-based weights. We use this attention
as a layer-wise weight when evaluating Ly of Eq. (1). In addition,
for implementing PKD, we reshape P! and P! of size h; X w; X ¢; to



S.-G. Cheon et al.

Table 5

ICT Express 11 (2025) 696-702

Ablation study on the KITTI validation set. £,,, represents Rol feature alignment loss, HFA represents hard feature assignment and SFA represents soft feature assignment (L gg,;).
The best results are highlighted in bold, and the second-best results are underlined (except for expert).

Approaches Methods Car (AP;p) Pedestrian (AP;,) Cyclist (AP;p) avg.
Lgor HFA SFA Easy Mod Hard Easy Mod Hard Easy Mod Hard
ResNet-50 (E) 19.13 14.69 12.42 6.85 5.58 4.58 4.38 2.48 2.57 8.08
ResNet-18 (A) 17.71 13.19 10.43 7.05 5.09 3.94 2.70 1.52 1.29 6.99
v 19.99 14.34 11.91 7.68 5.69 4.53 3.78 1.97 1.94 7.98
RAKD 4 4 18.80 13.64 11.47 9.13 6.81 5.25 3.39 1.83 1.80 8.01
4 v 20.75 14.45 12.02 8.56 6.19 5.02 3.59 1.78 1.81 8.24
Adaptive alignment - - - 18.28 13.58 11.42 7.29 5.47 4.22 4.89 2.85 2.81 7.87
PKD 19.66 13.40 10.98 6.65 4.81 4.29 3.78 211 2.19 7.54
PKD w/t RAKD v v 20.81 14.05 11.65 8.07 6.03 4.76 4.03 2.03 1.99 8.16
SemCKD 17.96 12.63 10.39 8.03 5.97 4.66 2.38 1.33 1.26 7.18
SemCKD w/t RAKD 4 v 19.37 13.91 11.59 8.71 6.18 4.91 4.60 2.36 2.25 8.21
GKD-BMFI 18.79 12.92 10.56 9.41 6.68 5.26 1.78 1.46 1.14 7.56
GKD-BMFI w/t RAKD v v 19.69 13.83 11.41 9.99 7.05 5.59 4.94 2.82 2.37 8.63

Table 6
Comparisons with the sensitive parameter to normal
for all classes and occlusion levels.

distribution on the KITTI validation set. The best results scores

are highlighted in bold. Avg. represents the score averaged

Method Parameter Value Car (AP;,) Pedestrian (AP;j,) Cyclist (AP;p) Avg.
Easy Mod Hard Easy Mod Hard Easy Mod Hard

Vanilla (4= 0, 6 = 1) 20.75 14.45 12.02 8.56 6.19 5.02 3.59 1.78 1.81 8.24

-0.4 18.79 13.00 10.73 6.80 4.31 4.07 4.46 2.15 2.22 7.39

-0.2 18.02 13.18 11.26 8.37 6.26 4.95 3.36 1.79 1.83 8.07

RAKD H +0.2 19.20 14.19 12.03 7.60 5.33 4.61 4.99 2.73 2.67 8.15
+0.4 19.30 14.38 12.02 7.57 5.97 4.61 4.99 2.16 2.21 7.66

0.5 18.29 13.42 11.30 7.89 6.00 4.71 2.74 1.42 1.26 7.44

° 2.0 18.31 13.59 11.38 8.54 6.22 4.76 4.04 2.20 2.02 7.89

RAKD (Ours) Expert Apprentice

RAKD (Ours)

Expert
]

Apprentice

(d)

Fig. 3. Qualitative comparison between expert and apprentice MonoRCNN++ detectors with our RAKD. The left image represents the 3D box coordinates projected onto a 2D
plane image, and the right image shows the position of the 3D object in a BEV. The green, pink, purple and orange lines show the GT and predicted car, pedestrian and cyclist
detection results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

¢;xh;-w;. Then, we compute the Pearson correlation coefficient between
the reshaped vectors with the mean and covariance of each vector.
Then, we perform FPN distillation with the normalized coefficients. To
implement GKD-BMF], the feature outputs (P! and P!) are utilized to
ensure that the multi-scale intermediate features are properly aligned.
Subsequently, two sets of CAM masks, one from the expert network and
the other from the apprentice, are obtained by averaging the feature
maps across channels ¢; and applying a sigmoid function. Following the
methodology outlined in the GKD-BMFI paper, a Gaussian mask is gen-
erated based on the bounding box d* with w,; and h,. Table 4 shows the
comparison results of KD methods. We also present the accuracy scores
of each vanilla apprentice detector. All the KD methods achieve more
precision gains than the vanilla detector. In most metrics, our RAKD
shows the best precision rates. In particular, In MonoRCNN++ our
RAKD is very effective for improving more difficult class detection such
as Car in Hard difficulty and Pedestrians. For MonoDETR our RAKD
significantly boosts pedestrian detection, resulting in a balanced overall
performance. These results show the superiority of our region-aware KD
method.
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3.5. Ablation study

Table 5 shows the effect of each method. For this ablation, we apply
our method one by one. Since L g,; of Eq. (4) consists of L,; of Eq. (2)
and (3), we evaluate its effect separately. We also compare the hard-
level feature assignment (HFA) of [6] by using u; of Eq. (3). In the
ablation study of RAKD, we know that the hard assignment does not
work well for 3D KD. On the other hand, our RAKD provides more gain
than HFA.

We also compare our RAKD with learnable assignments (Adaptive
alignment) paradigm. To implement this, we modified the network so
that the FPN assignment levels are produced as logits. Initially, all
weights for the FPN levels were set to 1/L, and then they were learned
by minimizing the loss. The experimental results for this adaptive
alignment are presented in Table 5 as adaptive alignment. As shown,
the performance obtained using these learnable assignments exhibits
lower accuracy than that achieved with our normal distribution-based
alignment. In addition, we apply this ablation study to other KD meth-
ods to investigate the flexibility of our method. We can improve the
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erb;ll:;ison of RAKD performance using different probabilistic models. Normal, Laplace, Uniform denote Normal distribution, Laplace distribution, Uniform distribution.
Method Prob. Model Car (AP;p) Pedestrian (AP;,) Cyclist (AP;,) Avg.
Easy Mod Hard Easy Mod Hard Easy Mod Hard
Normal 20.75 14.45 12.02 8.56 6.19 5.02 3.59 1.78 1.81 8.24
RAKD Laplace 17.03 13.07 10.32 7.79 5.55 4.60 4.68 2.31 1.96 7.49
Uniform 18.80 13.64 11.47 9.13 6.81 5.25 3.39 1.83 1.80 8.01
AP scores of PKD, SemCKD and GKD-BMFI by 8.22%, 14.34% and Acknowledgments

14.15% on average over all classes and levels. These results show that
our RAKD has high compatibility with other KD methods. Furthermore,
we conduct a sensitive analysis by changing the parameters of the
normal distribution. From this results, we confirmed that the normal
distribution with ¢ = 1, 4 = 0 achieves the best gains, and fit them for
other RAKD evaluation.

Also, we compared performance with normal distribution, laplace
distribution, and uniform distribution in Table 7 to confirm that normal
distribution is most accurate and most suitable for the experiment. The
results confirm that the normal distribution achieves the highest accu-
racy and is the most suitable choice for this experiment. This is because
the normal distribution provides a smooth and balanced weighting
across feature pyramid levels, effectively capturing gradual variations
in object scales, whereas the Laplace distribution tends to overempha-
size central values, and the uniform distribution is inefficient with equal
weight allocation.

3.6. Qualitative comparison

Fig. 3 visualizes both the 2D projections of 3D bounding boxes and
their BEV representations. Our RAKD method outperforms Expert and
Apprentice models in detecting distant cars (a, b) due to the robust
SROI method, which handles geometric variations. As shown in (c),
it also detects overlapping pedestrians and cyclists, showcasing its
robustness with occluded objects. Additionally, as shown in (d), the
accurate detection of distant cyclists highlights the effective of our
knowledge distillation process.

4. Conclusion

Despite advancements in knowledge distillation [2,28-30], mono
cular-based 3D detection remains underexplored. To address this, we
propose a novel region-aware KD (RAKD) method that leverages multi-
scale region features with a soft weighting mechanism and soft Rol
feature alignment loss for precise KD. Using RAKD, we implement on
MonoRCNN++ and MonoDETR to demonstrate significant improve-
ments in precision and latency compared to SOTA 3D detectors. Our
method also outperforms recent KD approaches and enhances their
performance when integrated. We establish RAKD as a strong baseline
for monocular-based 3D KD, offering efficient and accurate 3D object
detection.
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