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ABSTRACT Multi-object tracking (MOT) constructs multiple object trajectories by associating detections
between consecutive frames while maintaining object identities. In many autonomous systems equippedwith
a camera and a radar, an amplitude and visual features can bemeasured. Therefore, our goal is to solve aMOT
problem by associating detections with both features. To achieve it, we propose a unified MOT framework
based on object model learning and confidence-based association. For improving discriminability between
different objects, we present a method to learn several visual and amplitude object models during online
tracking. By applying the learned object models for the affinity evaluation, we improve the confidence-based
association further. In addition, we present a practical track management method to initialize and terminate
tracks, and eliminate duplicated false tracks.We implement severalMOT systemswith different object model
learning and association methods, and compare our system with them on challenging visual MOT datasets.
We further compare ourmethodwith the recent deep appearance learningmethods. These comparisons verify
that our method can achieve the competitive tracking accuracy while maintaining a low MOT complexity.

INDEX TERMS Object tracking, sensor fusion, visual/amplitude features, object model learning, affinity
evaluation, confidence-based data association, surveillance system.

I. INTRODUCTION
Multi-object tracking (MOT) is to find states (i.e. positions,
velocities, or sizes) of multiple objects in consecutive frames
(or scans) while conserving their identifications. Over the
past decades, it has been extensively studied in autonomous,
robot, and computer vision research areas since it is used
as a core algorithm to understand and predict behaviors of
dynamic objects. However, it is still a difficult problem due
to inaccurate detections, abrupt changes of object motion
or appearance, and frequent occlusion by clutter or other
objects.

To resolve this problem, a tracking-by-detection approach
has been flourished. Given object detections (or measure-
ments) from a radar and a camera, it builds trajectories by
linking detections between consecutive frames. Therefore,
automated tracking can be achieved by initializing and ter-
minating tracks with provided detections. In addition, track-
ing accuracy can be improved because it can recover track
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fragments and identity switches by matching tracks with the
corresponding detections.

In tracking-by-detection, a data association between tracks
and detections is crucial, and a lot of methods have been
developed. Greedy-based association methods such as the
nearest neighborhood [1] and the strongest neighbor [2] show
the high speed, but reduce the accuracy often when many
matching combinations exist. Joint probabilistic data associa-
tion (JPDA) [1] and multiple hypothesis tracking (MHT) [3]
can determine the optimal assignments between tracks and
detections during single and multiple frames, respectively.
However, they increase the association complexity combina-
torially as the number of possible assignments between tracks
and detections increases linearly. To reduce the complexity
of JPDA, [4] leverage the m-best solutions of an integer pro-
gramming. Also, [5] show the classical MHT method using
online appearance learning can be comparable to recent MOT
methods.

However, in recent years, many autonomous systems
(e.g. vehicles, mobile robots, and unnamed aerial vehicles)
use a camera and a radar together for more accurate and stable
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FIGURE 1. The overall framework of our approach for tracking objects with visual and amplitude features. When detection bounding boxes and
amplitudes are provided, multiple objects are tracked with the leaned object models at previous frame and confidence-based data association.
Then, visual/amplitude object models and object trajectories are updated in online by association results. Updated models and trajectories are
used as inputs of the subsequent frame.

object detection and tracking. In many practical scenarios,
combining different types of features can improve the accu-
racy and robustness ofMOT since sensors are complementary
to each other [6]. Therefore, [7] design object dynamic and
measurement models based on EKF to fuse radar, image,
and ego vehicle odometry measurements. Provided that a
scene geometry, [8], [9] present a method to align camera
and radar features on global cartesian coordinates, and use the
aligned features for object detection. Reference [10] present
an overall system for detecting and tracking moving objects
by combining different measurements from radars, Lidars,
and a camera. Reference [11] model measurements of a radar
and a stereo camera in polar coordinates as a member of
Lie Groups and perform object state filtering on Lie groups.
Most of them have focused on fusing heterogeneous features
effectively by developing object dynamic and measurement
models [7], [10], [11] or sensor alignments [8], [9]. Then, they
use the aligned or fused features for improving the estimation
of the object state [7], [8], [10], [11].

Similar to aforementioned other works, we also leverage
visual and radar features for more robust MOT. Compared to
those works [7]–[11], our work, however, is more focused on
improving MOT accuracy and speed by improving the data
association. Because the core of the data association is the
affinity evaluation, we propose effective object affinity mod-
els and an accurate affinity evaluationmeasure. In other word,
our work aims at learning the various object models effi-
ciently with the visual and amplitude features, and modeling

the affinity measure to make the learned models applicable
for the data association. As a result, we can improve the online
MOT accuracy while maintain a low tracking complexity.

To this end, we propose an overall MOT system which
can exploit both features effectively as shown in Fig. 1.
The proposed system is based on object model learning and
confidence-based data association. We first evaluate confi-
dence scores of tracks, and then categorize them into tracks
with low confidence and tracks with high confidence. For the
tracks with high confidence, we perform a local association to
associate them with detections at a current frame. As a result,
we can sequentially grow tracks with online provided detec-
tions using this frame-by-frame association. On the other
hand, we regard tracks with low confidence as fragmented
ones, and perform a global association between tracks with
low confidence and other tracks with high confidence or
detections. From this global association, we can build long
trajectories under occlusions.

For reliable association, accurate affinity (or likelihood)
evaluation between tracks and detections is essential. For a
track and a detection from the same object, their affinity
score should be high. Otherwise, the affinity should be low.
From visual features, we learn object appearance, motion and
shape models during tracking, whereas learn an amplitude
model from a radar feature. Using the learned object models,
we can evaluate affinity scores more accurately although
many tracks and detections exist, and use the evaluated scores
for the confidence-based association. For automated MOT,
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it is usually required to initialize tracks using detections and
terminate tracks according to their status. In addition, in many
cases, duplicated tracks which follow the same object are
generated. To handle these issues, we also present an effective
track management method.

On the challenging visual surveillance benchmark datasets
for MOT, we thoroughly evaluate our methods in terms of a
standard evaluation metric in radar-based MOT. In particular,
we implement different versions of MOT systems with differ-
ent object models and associationmethods, and compare their
MOT performance under several clutter densities. In addi-
tion, we compare our method with the state-of-the-art MOT
methods using deep learning. In this evaluation, we com-
pare these methods using the common evaluation metrics in
vision-based MOT. From these comparisons, we prove the
benefits of our methods on several datasets.

The key contribution of this paper can be summarized as
follows:
•AunifiedMOT frameworkwhich can leverage visual and

radar features effectively.
• Presenting a variety of visual and amplitude object mod-

els to learn object models more accurately.
• Enhancing the confidence-based association by applying

the several object models for affinity evaluation.
• Extensive implementation and evaluation for various

MOT systems on the challenging visual MOT datasets.
• Achieving the state-of-the-art performance comparable

with recent deep learning methods while remaining a low
tracking complexity.

II. RELATED WORK
In this section, we discuss previous study on radar-based and
vision-based MOT.

A radar usually provides a spatial detection (or mea-
surement) including a range and bearing. In many practical
cases, origins of detections are unknown because a returned
signal of a radar is mixed by objects and clutters. There-
fore, many data association methods have been developed
in order to assign a measurement to a corresponding track.
Simple greedy association methods such as the nearest neigh-
borhood [1] and the strongest neighbor [2] association are
presented. Although these methods have a low association
complexity, incorrect associations occur when tracks are spa-
tially located close together. For handling this joint track-
to-measurement assignment problem within a single-frame
or a multi-frame search, joint probabilistic data association
(JPDA) [1] and multiple hypothesis tracking (MHT) [3]
methods are proposed. For reducing the joint association
complexity, linear multi-target integrated probabilistic data
association (LMIPDA) [12] is also developed. For handling
nonlinear dynamics of multiple objects, sequential Monte
Carlo (SMC) methods [13]–[16] for MOT are developed.
To estimate object states and cardinality simultaneously, joint
probabilistic probability densities of multiple objects are
modeled in [13], [14]. However, the computational complex-
ity of these methods increases exponentially as the number

of hypotheses increases. To alleviate this problem, the data
association and state estimation are treated as a separated
problem in [15], [16].

However, the spatial feature is not sufficient for the asso-
ciation cases where objects are closely spaced or clutter
is densely distributed in the object vicinity. Therefore, for
more accurate association, an amplitude is used as an extra
feature in [17]–[21]. The basic idea of these methods is
that an amplitude from an object is usually stronger than
it from a clutter. The extended MHT [17] and Viterbi data
association [18] using the amplitude are provided. In order to
exploit the amplitude without the pre-knowledge of signal-
to-noise ratios (SNRs), a marginalization method [19] which
computes an object amplitude likelihood within any SNR
boundary is presented. For estimating objects’ states and
SNR jointly, SMC-based [20] and MAP-based SNR estima-
tion [21] methods are proposed.

In vision-based MOT, tracking by detection methods have
flourished for achieving automated and robust MOT. In gen-
eral, they builds trajectories by associating (or linking) detec-
tions. They can be divided into batch and online tracking
methods according to the association manner. Batch tracking
methods [5], [22]–[24] usually build trajectories by using
a global association of detections of whole frames. They
produce better MOT results than online methods in most
cases. However, they cannot be applied for real-time or
casual systems because they construct a batch of detections
beforehand, and build trajectories by linking whole detec-
tions by an iterative global association. On the other hand,
online tracking methods [25]–[30] build trajectories by using
a frame-by-frame association of past and current detections.
Therefore, they can be suitable for real-time applications.
However, they tend to yield identity switches and track
fragments by long-term occlusions since detections of future
frames are not used.

Because both tracking methods build trajectories by local
or global associations, an affinity evaluation between tracks
and detections is important for the accurate association.
To this end, object affinity models using object appear-
ance, motion, and shape cues [5], [25]–[28] are also devel-
oped. Due to the recent advances of deep learning, deep
learning-based affinity models [28], [31]–[33] have been pre-
sented. References [31], [34] use an autoencoder and a con-
volutional neural network (CNN) as deep appearance models
for learning more rich representation. References [28], [35]
exploit the Siamese network [36] to calculate the affinity
between an object pair from the network output directly.
References [32], [33] learn temporal dynamics of tracked
objects using a recurrent neural network and CNN. Refer-
ences [24], [30] learns a deep distance metric by aggregating
appearance and motion cues. Although the deep learning can
improve a model discriminability, many training samples and
costly GPUs are required. In this work, we introduce an
amplitude affinity model for vision-based MOT, and show
that MOT accuracy can be enhanced by using the new and
simple amplitude affinity model. We thus argue that the main
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benefit of our method can improve tracking accuracy while
maintaining a low tracking complexity. We also prove this by
comparing our method with recent MOT methods using deep
learning on the challenging visual MOT datasets.

III. VISUAL AND AMPLITUDE OBJECT MODELS
A. OBJECT DYNAMICS AND MEASUREMENT MODELS
We represent the state of an object i is represented as xit =[
pit , v

i
t , s

i
t , d

i
t
]T
∈ R7, where pit =

[
x i1,t , x

i
2,t

]
, vit =[

x i3,t , x
i
4,t

]
, sit =

[
x i5,t , x

i
6,t

]
, and d it =

[
x i7,t

]
are the position,

velocity, size, and expected (or mean) SNR. A nonlinear
discrete-time dynamic motion is used to model the behavior
of an object i as follows:

xi,mt = ft (x
i,m
t−1)+ qt−1, t = 1, 2, . . . (1)

where xi,mt =
[
pit , v

i
t
]T
∈ R4 means dynamic states of an

object i at frame t composed of positions and velocities along
with x and y coordinate, respectively. ft is a nonlinear function
of the motion state xi,mt−1 and qt−1 ∼ N (0,Qt ) is white
Gaussian system noise. The initial states xi,m0 is assumed
to be Gaussian N (µi,m0 ,P0) with the covariance P0, where
µ
i,m
0 = E(xi,m0 ) and P0 = cov{xi,m0 , xi,m0 }.
In general, a detection set obtained at a frame is com-

posed of many detections originated from multiple objects
and clutter (or background) [1], [37]. Let us denote a set of
detections at frame t as Zt =

{
zjt
}mt
j=1

. Each detection zjt

from a camera and a radar is represented as
[
bjt , a

j
t

]T
, where

bjt = [bjt,x , b
j
t,y, b

j
t,w, b

j
t,h] are x and y positions, a width, and

a height of a detection box obtained from a camera. Also, ajt is
an amplitude measurement from a radar. Even though a range
and bearing features can be detected from a radar, we use
an amplitude feature of it only because a camera usually
provides more accurate locations and sizes in a real-world
environment [6].

Furthermore, an object-originated measurement ξ ij,t is
modeled by a linear measurement model as

ξ ij,t =

[
1 0 0 0
0 1 0 0

]
xi,mt +

[
wx,t
wy,t

]
, (2)

where the noise wx,t ∼ N (0, σ 2
x ) and wy,t ∼ N (0, σ 2

y ) for
localization errors are uncorrelated Gaussian noise sequence.
Here, it is assumed that the visual bij,t and amplitude aij,t
measurements are independent each other.

B. AFFINITY EVALUATION MODELS
We then define a track (or trajectory) T i as a set of states up to
frame t as T i = {xik |v

i(k) = 1, 1 ≤ t is ≤ k ≤ t ie ≤ t}, where
t is and t

i
e are the time stamps of the start- and end-frame of the

track. If an object i appears at frame t , we denote it by using
a binary function as vi(t) = 1. Otherwise, vi(t) = 0.
In addition, we then describe a track T i with four elements
{Ai, S i,M i,Pi}, where Ai, S i, M i, and Pi represent appear-
ance, shape, motion, and amplitude models, respectively.

Then, an affinity measure to determine how well two objects
are matched is defined as

3(u, z) = 3A (u, z)3S (u, z)3M (u, z)3P (u, z) , (3)

where u and z can be a track or a detection. Each affinity is
computed as follows:

3A (u, z) = max
(
cos

(
fuproj, f

z
proj

)
, 0
)
,

3S (u, z) = exp
(
−

{
hu − hz

hu + hz
+
wu − wz

wu + wz

})
, ,

3M (u, z) = N
(
putail + vuF2;p

z
head ,OF

)
×N

(
pzhead + vzB2;p

u
tail,OB

)
,

3P (u, z) = gDTa (āu|d̂ z)× gDTa (āz|d̂u) (4)

For the appearance affinity 3A (u, z), we use the subspace
learning using partial least square (PLS) [38]. We first extract
an averagedRGB color histogram fuhist of each track for1new

1

frames. We then project fuhist on the learned PLS subspace
W u (i.e. fuproj = W ufuhist ) from (14) to produce a compact
and discriminative feature fuproj. The appearance affinity is
the cosine similarity between fuproj and fzproj. More details of
learningW are given in Sec. III-D.

The shape affinity3S (u, z) is calculatedwith their updated
height h andwidthw.3M (u, z) is themotion affinity between
u tail (i.e. the last refined position) and z head (i.e. the first
refined position) with the frame gap2. The forward velocity
vuF is evaluated from the head to the tail of u, while the
backward velocity vzB is evaluated from the tail to the head
of z. We use the Kalman filtering for updating the veloc-
ities. The difference between the predicted position com-
puted with the velocity and the refined position is assumed
to follow a Gaussian distribution. The forward motion is
used only when evaluating affinity between a track and a
detection.

The amplitude affinity3P (u, z) is evaluated with the aver-
aged amplitude scores āu and āz for associated amplitude
measurements up to a current frame, and their estimated
SNRs, d̂u and d̂ z. In the next section, we discuss an ampli-
tude likelihood model gDTa and a method to estimate d̂u

and d̂ z.

C. AMPLITUDE MODEL AND UNKNOWN SNR ESTIMATION
1) OBJECT AMPLITUDE MODEL
We assume the probability density of an amplitude a fol-
lows a Rayleigh distribution as discussed in [39]. We then
define the expected (or mean) SNR2 d = S/N0, where S
is the signal power and d can be treated as the expected
object signal power because N0 = 1. In addition, a slow
Rayleigh fading amplitude-modulated narrowband signal is
considered in the presence of narrowband noise. In this case,
the signal returned from the object is expressed as the sum of

1More details can be found in Sec. V-A.
2The SNR is represented in log scale: SNR (dB) = 10log10 (d).
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the transmitted signal and the narrow band noise. The back-
ground noise is normalized as in [39]. This means that the
expected noise power N0 is unity. Therefore, the amplitude
density function of an object follows the Rayleigh distribution
with the variance 1 + d (i.e., the signal-plus-noise to noise
ratio):

p(a, d) =
2a

1+ d
· exp

(
−a2

1+ d

)
. (5)

However, to evaluate the signal power S from the object
amplitude distribution (5), the expected object SNR d is
required to estimate because

S = E
[
a2
]
=

∫
∞

0
a2p(a, d)da. (6)

Let us next consider the case in which the amplitude a
exceeds a detection threshold DT , i.e., a ≥ DT . Then,
the amplitude density of the object becomes

pDT (a, d) =
1
PD

p(a, d)

=
2a

1+ d
· exp

(
DT 2
− a2

1+ d

)
, a ≥ DT , (7)

where the object detection probability PD used for normaliza-
tion is calculated as

PD =

∫
∞

DT
p1(a, d)da = exp

(
−DT 2

(1+ d)

)
. (8)

When the object SNR d is known, the amplitude likeli-
hoods of an object can then be computed as

Object : gDTa (a|d) = pDT (a, d), (9)

2) SNR ESTIMATION
To exploit gDTa (a|d), we estimate object SNR d using the
MAP method [21]. We model the prior p(d) with a Gaussian
random walk model. In other word, we consider that the SNR
is randomly fluctuated in the vicinity of the previously esti-
mated (or initial) SNR d̂ it−1. Then, p(d) can be represented
with the estimated d̂t−1 at frame t − 1 and variance σ 2

d as
follows:

p(d) = N
(
d; d̂ it−1, σ

2
d

)
, d̂τk ≥ 0. (10)

To estimate an unknown SNR more accurately, one can
use several amplitude measurements. In other words, rather
than inferring the object SNR with an instant amplitude
feature ait of the object i at frame t , it can be esti-
mated with a set of amplitude features stacked during
1 frames.

Let us denote the stacked amplitude measurements from
time t − 1 + 1 to time t as ait−1+1:t .

3 The MAP problem

3To determine ait at frame t , we first filter out measurements using
the track gating technique and amplitude thresholding. We then select the
amplitude with the maximum strength among filtered measurements, and
consider it as ait . More details can be founded in [21].

of finding an optimal SNR with respect to the collection of
amplitudes ait−1+1:t can be modeled by

d̂ it = argmax
d

∏
ai∈ait−1+1:t

p
(
ai, d

)
, d ≥ 0,

= argmax
d

∏
ai∈ait−1+1:t

p
(
ai|d

)
p(d),

= argmax
d

∑
ai∈ait−1+1:t

log
(
p(ai|d)

)
+ log (p(d)) , (11)

where the first likelihood term p(ai|d) is given by (9). By sub-
stituting the SNR prior of (11) with (10), the following objec-
tive function can be derived:

d̂ it = argmax
d

∑
ai∈ait−1+1:t

log
(
p(ai|d)

)
+ log(c),

c = N
(
d; d̂ it−1, σ

2
d

)
. (12)

We solve this nonlinear least-squares problem using the
Levenberg-Marquardt method [40].

D. ONLINE APPEARANCE LEARNING
1) SAMPLE GENERATION
Given an associated detection box bi =

[
bx , by, bw, bh

]
for

an object i, we can generate some positive sample boxes by
rescaling bi with a scaling factor ψ . We denote a rescaled
box as bires = [bx , by, bw ·ψ, bh · ψ]. We initially set to ψ =
0.7 and increase ψ with the interval 0.1 until an overlap ratio
αover for an intersection region over an union region between
di and dires is below to 0.75. We generate a set of positive

boxes Bi,+t =
{
bi,
{
bi,kres

}g+−1
k=1

}
, where bi,kres has αover ≥ 0.75

over bi.
For improving appearance discriminability between an

object and other objects nearby or scene clutter, we col-
lect negative sample boxes around an object. Given an
object bounding box bi, we define a negative sample box as
bi,kneg =

[
bx + β cos(ω), by + β sin(ω), bw/ζw, bh/ζh

]
. Here,

β =
ρ

√
b2w+b

2
h

2 and ω = 2πk
g− . k ∈ {1, . . . , g−} is a negative

sample index. In our experiment, we set ρ, ζw and ζh to
1.2, 2 and 4, respectively. As a result, a negative sample

set Bi,−t =

{
bi,kneg

}g−
k=1

is generated by collecting bi,kneg with
different k .
Once box sets Bi,+t and Bi,−t are generated, we collect

positive Z i,+t =
{(
fkhist ,+1

)}g+
k=1 and negative Z i,−t ={(

fkhist ,−1
)}g−
k=1 sample sets. Here, g+ and g− are the number

of positive and negative samples. fkhist is a color histogram
feature with dimension % extracted from positive Bi,+t and
negative Bi,−t box sets.

2) PARTIAL LEAST SQUARE (PLS) SUBSPACE LEARNING
To discriminate appearance features of different objects,
we learn projection spaces using the PLS since the
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appearance learning using PLS shows themore discriminabil-
ity than PCA and color histogram features [38]. We denote a
sample set of the i-th track collected from t − 1 + 1 to t
frames as Z it−1+1:t , where Z

i
t−1+1:t consists of Z

i,+
t−1+1:t and

Z i,−t−1+1:t as defined in Sec. III-D1. Using the NIPALS algo-
rithm, we learn a new PLS weight vector w with dimension
% at each iteration as follows:

w =
FT e
eT e

, w =
w
‖w‖

,

r = Fw, p =
oT r
rT r

, e =
op√
pT p

, (13)

where F = {f1hist , f
2
hist , . . . , f

g
hist } is the appearance fea-

ture matrix with dimension g × % consisting of g his-
togram features with dimension % for Z it−1+1|t . r, o and
e are g-dimensional feature score, label, and label score
vectors, respectively. p is a label loading value. By learning
w for τ iterations, we can produce a PLS weight matrix
W = {w1,w2, . . . ,wτ }T .

Then, a weight matrixW i for the i-th object can be learned
with Z it−1+1|t using (13). For updating W i during tracking,
we first generate a W i

new with Z it−1+1|t , and combine W i
new

with the learnedW i and balancing weight υ = 0.5:

W i
←− υW i

new + (1− υ)W i, (14)

Once W i is learned, we can generate a projected PLS
feature fiproj = W ifihist and use fiproj for affinity evaluation
in (4). In our case, we set % and τ to 144 and 40. This means
that tracking speed can be improved because the dimension
of fiproj is much more than the dimension of the original
feature fihist .

IV. DATA ASSOCIATION
We define T i in Sec. III-B. Then, a set of trajectories of all
objects up to frame t can be denoted as T1:t . We denote a
set of trajectories existing at frame t as

{
T i
}N
i=1. Using the

confidence measure [28], we then evaluate a track confidence
in consideration of the length and continuity of a track and the
affinity with an associated detection as follows:

conf
(
T i
)
|H

 1
L

∑
k∈[t is,t ie],vi(k)=1

3
(
T i, zik

)
×

(
1− exp−β·

√
(L−w)

)
, (15)

where L is the length of a track χ i as L =
∣∣T i∣∣, and w is

the number of frames in which the object i is missing due to
occlusion by other objects or unreliable detection as λ = t ie−
t is+1−L. β is a control parameter relying on the performance
of a detector. When a detector shows high accuracy, β should
be set to a large value (β is set to 1.2 as done in [28]). The
average affinity3

(
T i, zik

)
between the track and detection is

computed by (3).

Once the confidence scores of tracks are computed by (15),
local and global association are adaptively performed accord-
ing to track confidence. A track with high confidence T i(hi) is
considered as a reliable track, and is locally associated with a
detection in order to grow it progressively. When h track with
high confidence and a detection set Zt = {z

j
t }
m
j=1 are given at

frame t , we compute a local association score matrix S as

S = [sij]h×m, sij = −3(T i(hi), z
j
t ), z

j
t ∈ Zt , (16)

where the affinity 3(T i(hi), zjt ) is computed by (3). Then,
track-detection pairs which maximize the total affinity in
Sh×n are determined by using the Hungarian algorithm [41].
When the association cost of a pair is less than a pre-defined
threshold, −log(θ ), zjt is associated with T i(hi). For the track
T i(hi) associated with detection zjt , states and confidence of
the track are updated with the association results as follows:
• The position and the velocity of a track are updated with

the associated zjt . The size of the object is also updated by
averaging the sizes of associated detections of recent past
frames.
• conf (T i) is updated using zjt by (15).
On the other hand, a tracks with low confidence T i(lo) is

considered as a fragmented trajectory by occlusions. To link
fragmented tracks into one, we associate T i(lo) with T i(hi) or
a detection yjt not associated with any T i(hi) in the local asso-
ciation. Assume that there exist η non-associated detections
(η ≤ m), and h and l tracks with high and low confidence,
respectively. Then, we perform global association by consid-
ering following events:
• Event A: T i(lo) is associated with T j(hi),
• Event B: T i(lo) is terminated,
• Event C: T i(lo) is associated with yjt .
We then define a global association score matrix G for all

the events as follows:

G(l+η)×(h+l) =

[
Al×h Bl×l
−θη×h Cη×l

]
, (17)

Here, A = [aij] represents the event A, where aij =
−3(T i(lo),T j(hi)) is the association cost computed by the
affinity between them using (3). B = diag [b1, . . . , bl] mod-
els the event B, where bi = −(1− conf (T i(lo))) is the cost
to terminate T i(lo), and C =

[
cij
]
represents the event C,

where cij = −3(T i(lo), y
j
t ) is the association cost computed

by (3). A threshold θ is used to select reliable association
pairs having high affinity scores.

Once G matrices are computed, we determine optimal
matching pairs using the Hungarian algorithm such that the
total affinity score in the matrix is maximized. Then, detec-
tions of the associated pairs are linked each other in a sequen-
tial manner, and confidences of all existing tracks are updated
by (15).

V. TRACK MANAGEMENT AND UPDATE
For achieving automated MOT, managing tracks appropri-
ately is also important. In this section, we briefly discuss
some tasks which are contained in the track management.
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In general, a track initialization is required to generate a
new track with detection responses. Once a track is gener-
ated, it tracks an object. However, a track could not often
follow an non-object (e.g. clutter) due to occlusions and
inaccurate detections. In this case, we need to eliminate this
false track to correct the tracking failure. In some cases,
track duplication, which more than two tracks follow a same
object, can be occurred by inaccurate track initialization and
tracking failures. In the next section, we provide our track
initialization, termination, and merging method to deal with
those difficulties.

A. TRACK INITIALIZATION AND TERMINATION
The problem of initiating a new track can be transformed
as a problem to find consecutive and similar detection
responses during a certain 1new frames. In general, detec-
tions of a new track should not be associated with any
existing tracks in the local and global association stages.
We define a set of non-associated detections from t−1new+1
to t as Yt−1new+1:t . It means that the candidates for new
tracks are reduced from Zt−1new+1:t to Yt−1new+1:t , where
Yt−1new+1:t ⊆ Zt−1new+1:t . We define a new track T new =
{ynewk |t−1new+1 ≤ k ≤ t}, where t−1new+1 and t are the
time stamps of the start- and end-frame of the new trajectory,
and ynewt = [bt , at ]T . Now, we define an affinity score for the
new track initialization 3N (T new) as follows:

3N (T new) |H
1

1new − 1

t∑
k=t−1new+2

3S (yk , yk−1)

×3V (yk , yk−1) , yk ∈ Yt−1new+1:t (18)

where3S (yt , yt−1) is the shape affinity defined in (4). Also,
we evaluate the spatial affinity 3N (yk , yk−1) by evaluating
spatial distances along x and y coordinates. 3V (yk , yk−1) =
N(ξk ; ξk−1, 6v), where ξk = [bk,x , bk,y]. The covariance 6v
is then determined by the maximum velocities of an object
along with x and y coordinates and the unbiased converted
covariance Rc

t [42], such that

6p =


(
Vx,maxTs + 2

√
R11t

)2

0

0
(
Vy,maxTs + 2

√
R22t

)2

.


(19)

Then, we generate a new track when3N (T new) exceeds the
track initialization probability ϑI .

The desirable track termination method should identify
and eliminate false tracks, i.e., those that do not follow true
objects. In our case, we evaluate the reliability of a track using
the track confidence model conf (Ti), and some tracks which
have confidences lower than ϑT are eliminated. Using the
track initialization and termination methods we can generate
new tracks and eliminate false tracks efficiently by consider-
ing affinities between detections and the track reliability.

B. TRACK MERGING
In MOT problems, several tracks often follow a same object
due to inaccurate track initialization or tracking failures. It is
called a track duplication. In [20], we presented a track
merging method based on a mean shift algorithm. In brief,
we classify and group tracks

{
T i
}N
i=1 according to the recent

states
{
x̂it
}N
i=1. Using the mean shift, themc modes of clusters{

Cq
}
1,...,mc

are then determined. Once clusters
{
Cq
}
1,...mc

are
generated, track q and its components such as track states
x̂qt , covariance Pqt|t , track confidence conf

(
T i
)
, and object

models are determined as follows:
• The track state x̂qt|t is the mode of the cluster

{
Cq
}
1,...,mc

.

• The covariance Pqt|t is the min
(
P
{Cq}
t|t

)
.

• The confidence conf (T q) is the max
(
conf

(
T {Cq}

))
.

• The object models {Aq, Sq,Mq,Pq} are the models of the
track q∗, where argmax

q∗

(
conf

(
T {Cq}

))
.

VI. EXPERIMENTAL RESULTS
On the challenging visual surveillance datasets, we evaluate
our MOT method. For more comparisons, we implement and
compare different MOT methods.

A. IMPLEMENTATION
To verify our affinity models using visual/amplitude features
and the confidence-based associationmethod, we have imple-
mented and compared several multi-object tracking systems
(M1-M4) using different object models and data association
methods. For this comparison, based on the Algorithm 1,
we have implemented the following MOT systems by com-
bining different methods:
• (M1) without visual models;
• (M2) without an amplitude model;
• (M3) with all models and LMIPDA-AI association [20];
• (M4) with all models and confidence-based association;
Here, the system (M1) only uses the range, bearing, and

amplitude features of radars. For affinity evaluation of (M1),
we therefore use the object motion 3M and amplitude 3P

models. On the other hand, (M2) do not exploit an ampli-
tude feature, and exploit visual models 3A, 3S , and 3M for
affinity evaluation. For (M3) and (M4), we use the all models
of a camera and radar, but different association methods are
applied for each system. In (M3), we use the LMIPDA-AI
association method. In this association, a track existence
probability should be computed in order to evaluate the pos-
terior association probability β ij,t between a track i and a
measurement j which is within a gate of the track i. For a fair
comparison, we replace a track existence probability with a
track confidence. In addition, (M3) leverages all the affinity
models when evaluating the β ij,t . When estimating an object
SNR in (M1), (M3), (M4), we set the variance σ 2

d and1 to 5
and 5 when solving the object function (12).

For (M3), we use the gating technique to reduce match-
ing combinations between tracks and measurements as
done in [12], [20]. Using the gating technique, mit validated
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Algorithm 1 The Overall Algorithm for Implement-
ing MOT Systems With Different Association Meth-
ods and Affinity Models

Input : A set of measurements: Zt and a set of trackers{
T i
}Nt
i=1

, where each tracker is composed of T i =

{Ai, Si,M i,Pi, xik |v
i(k) = 1, 1 ≤ t is ≤ k ≤ t

i
e ≤ t}.

Output: Updated trackers
{
T i
}Nt
i=1

1 for M1 to M4 do
2 // Step1: Select a set of validated measurements Zit ;
3 if M3 then
4 for i← 1 to Nt do
5 Zit = {z

i
j,t : (v

i
j,t )

T(Sit )(v
i
j,t ) ≤ γ, a

i
j,t ≥ DT }

by (20)
6 end
7 end

8 // Step2: Data association;
9 // Confidence-based association;

10 if M1 or M2 or M4 then
11 for i← 1 to h do
12 for j← 1 to m do
13 Generate a local association matrix

S = [sij]h×m by (16)
14 end
15 Local association by optimizing S
16 end
17 for i← 1 to l + η do
18 for j← 1 to h+ l do
19 Generate a global association matrix

G(l+η)×(h+l) by (17)
20 end
21 Global association by optimizing G
22 end
23 end
24 // LMIPDA-AI association;
25 if M3 then
26 for i← 1 to Nt do
27 for j← 1 to mτk do
28 Evaluate a posterior association

probability βij,t by [20]
29 end
30 end
31 end

32 // Step3: Model and confidence update;
33 for i← 1 to Nt do
34 if M1 then
35 Update {M i,Pi} by (12)
36 end
37 if M2 then
38 Update {Ai, Si,M i

} by (14)
39 end
40 if M3 or M4 then
41 Update {Ai, Si,M i,Pi} by (12) and (14)
42 end

43 Update conf
(
T i
)
by (15)

44 end
45 // Step4: Track management;
46 for i← 1 to Nt do

47 Terminate T i when conf
(
T i
)
≤ ϑT

48 end
49 Define

{
Cq
}
1,...mc

and merge T {Cq}1,...mc
50 Initialize T new when 3N (T new) ≥ ϑI
51 end

measurements in the gate of the track i are determined by

Zit =
{
zij,t :

(
vij,t
)T (

Sit
)−1 (

vij,t
)
≤ γ

}
, i = 1, . . . , mit ,

(20)

where γ is a gate threshold and mit is the number of mea-
surements in the gate of the track i; vij,t = ξ ij,t − ξ̄

i
t|t−1, is a

zero-mean Gaussian residual with a covariance Sik .
Given the gated measurements, amplitude thresholding is

exploited to filter out false alarms with the threshold DT
because the amplitude from an object is usually stronger than
false alarms [20].

B. EVALUATION METRIC
As a performance measure, the optimal subpattern assign-
ment (OSPA) metric [43] is used. Given the true and
estimated sets composed of states of multiple objects,
we measure the localization distance and cardinality dis-
tance. The localization distance evaluates the state similar-
ities between matched pairs of the true and estimated sets.
On the other hand, the cardinality distance evaluates how
well the number of existing tracks matches the number of
true objects. As an overall performance measure, the OSPA
distance representing the total error is calculated by summing
both the localization and cardinality distances. For all the
distance metrics, a smaller distance indicates better results.

In the OSPAmetric, the cut-off parameter is set to c = 100,
which determines the relative weighting of penalties assigned
to the cardinality and localization errors. The order parameter
then is set to p = 1 which determines the sensitivity of the
metric to outliers.

C. VISUAL MULTI-OBJECT TRACKING DATASET
To compare the systems (M1-M4) in real MOT environ-
ment, we use the publicly available VS-PETS 2009 bench-
mark dataset [44]. In the dataset, PETS S2.L1 and
PETS S2.L2 sequences for multi-object tracking evaluation
are exploited. PETS S2.L1 and S2.L2 sequences consist
of 795 and 436 frames and the resolution of each image is
768(pixels) × 576(pixels). 23 and 74 objects exist for PETS
S2.L1 and S2.L2, respectively. As shown in Fig 2(a) and
Fig. 3(a), the trajectories of multiple objects are compli-
cated. In particular, PETS S2.L2 sequence is very challenging
because many objects are moving and interacting with each
other. For more evaluation, we compare (M1)-(M4) on the
TownCentre dataset. This dataset consists of 4500 frames and
each frame is a full HD image of 1920(pixels)×1080(pixels)
resolution. 230 objects are moving and interacting as shown
in Fig. 4(a). We allocate each object to an initial SNR within
[5dB, 20dB], and the object SNRs fluctuate at each scan
according to the Gaussian distribution (10) with the variance
σd = 10.

D. DETECTION
For PETS and Town Centre datasets, we use the public
available detections from [45] and [46] which exploit the
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FIGURE 2. Comparisons with different MOT systems (M1-M4) for the PETS S2.L1 over 795 frames. In 2(a) and 2(b), ∗ represents false positives
from clutter.

HOG detector [47] and its variant [48], respectively Mea-
surements of objects are assumed to detect with PD = 0.95
and some detections for the objects are removed according
to PD. From each detection, spatial locations (i.e. x and y
positions) and sizes (i.e. width and height) are obtained. For
each object SNR at frame t , amplitude measurements are
generated according to Rayleigh distribution (6).

For each sequence, we generate more clutters with vari-
ous clutter density λ (measurements/frame/pixel2): For PETS
S2.L1, λ = 6.78 × 10−5, λ = 1.13 × 10−4 and λ = 1.58 ×
10−4; For PETS S2.L2, λ = 4.52× 10−5, λ = 9.04× 10−5

and λ = 1.36 × 10−4; For Town centre, λ = 9.65 × 10−6,
λ = 1.93 × 10−5 and λ = 2.89 × 10−5. As a result,
from 20 to 70 clutters are produced randomly at each frame.
In Fig. 2(a) - 2(b), Fig. 3(a) - 3(b), and Fig. 4(a) - 4(b),
we represent false detections from clutter with *.

E. TRACKING PARAMETERS
For a fair comparison, all the systems (M1)-(M4) use
the same detections and tracking parameters. From an

extensive evaluation, we know that most parameters do not
affect the overall system performance significantly. In the
affinity model in (3), all parameters (i.e. positions, sizes and
velocities) are automatically determined by tracking results
except for OF and OB, which are set to diag[162 322]. The
same threshold θ = 0.4 is used for the local and global
associations. For M3, we set the thresholds of a gate and
amplitude to γ = 15 and DT = 0.7. For initializing a new
track,1new andϑI is set to 5 and 0.3. Themaximumvelocities
Vx,max and Vy,max are set to 20 (m/s). For track termination,
ϑT is 0.05.

F. QUANTITATIVE RESULTS
1) PETS S2.L1 SEQUENCE
In Fig. 2, we compare the MTT systems (M1)-(M4).
Figure 2(a) - 2(b) show the true trajectories of all the objects
and detections for this sequence. In Fig. 2(d), we show the
OSPA total, cardinality, and location error rates for all the
systems. The OSPA total errors of systems (M1) and (M2)
using visual or amplitude models only are much higher than
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FIGURE 3. Comparisons with different MOT systems (M1-M4) for the PETS S2.L2 over 436 frames. In 3(a) and 3(b), ∗ represents false positives from
clutter.

those of (M3)-(M4) using all the models. As clutter density
λ gets higher, OSPA distances of (M1) and (M2) increases
considerably. This is because that more clutter is likely to be
generated nearby objects as λ increases. Therefore, exploiting
one of visual and amplitude models only reduces the discrim-
inability of object affinity evaluation. In particular, OSPA
errors of (M1) without visual feature is higher than those
of (M2) without amplitude feature. The OSPA localization
error of (M1) is lower than that of (M2). The reason is
that (M1) generates fewer tracks than (M2) as shown in its
higher cardinality error.

On the other hand, (M3)-(M4) show the better accuracy
than (M1) and (M2), and maintain their performance for
high λ. This indicates that using both features can enhance
the association accuracy and is more effective in the heavy
cluttered environment. When comparing (M3) and (M4)
using different association methods, using confidence-based
association shows the better results than LMIPDA-AI.

This means that adaptive local and global association based
on track confidence can determine the association pairs more
accurately.

2) PETS S2.L2 SEQUENCE
Figure 3 demonstrates the tracking results of the (M1)-(M4)
on the PEST S2.L2 sequence. This sequence is very chal-
lenging because of the complex motions of objects and many
interactions between many objects. Therefore, the overall
performance of all the systems is degraded over their perfor-
mance on PETS S2.L1. In particular, the localization errors of
systems increase due to inaccurate detections and many false
detections.

From the OSPA results shown in Fig. 3(d), we also
confirm that exploiting both visual and amplitude models
indeed is beneficial to reduce OPPA errors when compar-
ing (M1)/(M2) and (M3)/(M4). In addition, (M1) without
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FIGURE 4. Comparisons with different MOT systems (M1-M4) for the Town Centre over 4500 frames. In 4(a) and 4(b), ∗ represents false positives
from clutter.

visual feature shows the lowest accuracy. Using the amplitude
model reduces OSPA error about 10 when comparing (M2)
and (M4). In particular, the effect of using the amplitude
model Pi increases as λ increases. In this evaluation, our (M4)
achieves the best accuracy. In particular, the cardinality errors
of (M4) are not sensitive to λ. The low cardinality errors
reflect that the number of generated tracks is close to the
number of true objects.

3) TOWN CENTRE SEQUENCE
We further compare (M1)-(M4) on the Town centre sequence
as shown in Fig. 4. This sequence is very long and con-
tains many objects. However, the performance of all sys-
tems is better than other two sequences. We also obtain the
better results by using both visual and amplitude models.

In addition, confidence-based association shows the lower
OPSA errors than LMIPDA-AI. From the quantitative results
on PETS S2.L1, PETS S2.L2, and Town Centre, we prove
that our affinity models and association method contribute to
increase MOT accuracy, and the performance gain of using
our methods gets higher as clutter density increases.

G. QUALITATIVE EVALUATION
In Fig. 5, we compare tracking results of (M1), (M2),
and (M4). Figure 5(a) and 5(b) compare (M1) without visual
feature and (M4) using both features. We found that some
track fragment (FG) and identity switch (ID Switch) are
caused by inaccurate association of (M1) when tracked
objects are occluded. Furthermore, we show that (M2) with-
out the amplitude model produces an ID switch as shown
in Fig. 5(c).
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FIGURE 5. On PETS S2.L2 and Town Centre, comparison results between (M1)/(M2) and our (M4) systems. They use
different object affinity models.

Figure 6 shows the track results of our (M4) on the several
datasets. Our (M4) can track multiple objects successfully
even in complex scenes.

H. COMPARISON WITH DEEP APPEARANCE LEARNING
To show the benefits and effects of ourmethodmore, we com-
pare our method with recent MOT tracking systems using
deep appearance learning [28], [31], [36]. For a fair compari-
son, we implement all other systems on the same framework
shown in Fig. 1, and replace the appearance model (4) with
their deep appearance models. We use the public available
codes for [28], [31], [36], and train deep appearance models
on the CUHK02 [49] person re-identification dataset. The
dataset contains 7,262 image patches for 1,816 different per-
sons captured from 10 camera views. We resize a color image
patch of a person to 128×64, and use the resized patches as an
input of deep appearance models. We obtain detection boxes
by applying a Mask R-CNN [50] detector for each image.
We also generate amplitude measurements with the Rayleigh
distribution (6).

In addition, for this comparison we use the common evalu-
ation metrics in vision-based MOT: the multiple object track-
ing accuracy (MOTA↑), multiple object tracking precision
(MOTP↑), the ratio of mostly tracked trajectories (MT↑),
the ratio mostly lost trajectories (ML↓), the number of track
fragment (FG↓), recall (REC ↑), precision (PRE ↑), false
alarms per frame (FAF↓), the number of identity switches
(IDS↓) and tracker speed in frames per second (Hz↑). Here,↑
and ↓ represent that higher and lower scores are better results,
respectively.

Table 1 shows the evaluation results on PETS S2.L1, PETS
S2.L2, and Town centre datasets. As shown, the proposed
methods are comparable with other MOT systems [28], [31],
[36] using deep learning. Although the recent method [28]
shows the best tracking accuracy, the proposed method with
amplitude feature shows the better MOTA, IDG, FG, REC,
PRE, FAF scores than other deep learning-based MOT track-
ers [31], [36]. In addition, we also know that using the
amplitude feature can improve the MOTA score, which is
the most important metric, by 1.58% when comparing our
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FIGURE 6. On PETS S2.L1, PETS S2.L2, and Town datasets, tracking results of our MOT system. Here, box edge color indicates confidence of a track at each
frame.

TABLE 1. Performance comparison with proposed systems and other MOT systems using deep appearance learning. The same detections and ground
truth are used on PETS, ETHMS and Town Centre datasets.

systems with/without amplitude. However, the best bene-
fit of our method is the tracking speed as shown. Indeed,
our methods can greatly reduce the run time compared
to [28], [31], [36]. Note that we achieve this performance

without using the person re-identification dataset for appear-
ance learning. These comparison results indicate that our
method can work very fast while keeping high MOT
accuracy.
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FIGURE 7. Comparisons of our methods by using different detectors on PETS S2.L1 and PETS S2.L2 datasets. Here, AMP
NO-AMP mean our methods with/without the amplitude affinity model. HOG and MRCN are the HOG [48] and Mask
R-CNN [50] detectors, respectively.

I. EVALUATION USING DIFFERENT DETECTORS
In order to investigate how a detector accuracy affects the
MOT performance, we evaluate our MOT system over dif-
ferent detection responses on PETS S2.L1 and PETS S2.L2.
We use the public available HOG detections from [45], [46]
and detections by applying the Mask RCNN [50] detector.
We compare our systems with/without the amplitude affinity
models.

Figure 7 compares the performance of both systems in
terms of several MOT metrics. Since the detection accu-
racy affects the precision and recall of a tracker the most,
we compute recall, precision, and other metrics related to
these. For all the metrics, our trackers yield the better scores
by using the recent Mask RCNN detector than using a HOG
detector. In particular, the gap of MOTA scores is large.

Since this metric represents the overall tracking accuracy,
it turns out that MOT performance is affected by a detec-
tion quality. When comparing our systems with/without the
affinity model, exploiting the amplitude affinity produces
better rates for all the metrics. Thus, we also prove that the
proposed amplitude affinity model can indeed enhance the
MOT performance regardless of the detector performance.

VII. CONCLUSION
In recent years, many autonomous systems exploit cam-
era and radar sensors for achieving stable and accurate
multi-object tracking. In this study, we have proposed a
unified framework to exploit visual and amplitude features
effectively for MOT. The proposed framework is based
on object model learning and data association methods.
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We have learned visual and amplitude models during track-
ing. In particular, we have learned an object appearance
model using discriminative subspace learning, and an ampli-
tude model using the MAP-based SNR estimation. By com-
bining these affinity models with the confidence-based
association, we have enhanced the MOT performance sig-
nificantly. Furthermore, we have presented a practical track
management method to deal with track initialization and
duplication.

In order to show the benefits of our methods, we have
implemented several MOT systems using different affinity
models and association methods, and compare their per-
formance extensively on several challenging visual MOT
datasets. In addition, we have compared our method with
state-of-the-art MOT methods using deep appearance learn-
ing. The comparison proves that ourmethod achieves the high
tracking accuracy which is comparable to the recent methods.
In particular, the best benefit of our method is the low MOT
complexity. We greatly reduce the run-time against the deep
learning methods.
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