ICT Express 11 (2025) 974-980

journal homepage: www.elsevier.com/locate/icte

Contents lists available at ScienceDirect

ICT Express

Check for

Neural-NGBoost: Natural gradient boosting with neural network base | e

learners

Jamshidjon Ganiev'”!, Deok-Woong Kim"”!, Seung-Hwan Bae

Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea

ARTICLE INFO ABSTRACT

Keywords:

Natural gradient boosting
Neural networks
Probabilistic prediction
Uncertainty estimation

NGBoost has shown promising results in probabilistic and point estimation tasks. However, it is vague
still whether this method can be scalable to neural architecture system since its base learner is based on
decision trees. To resolve this, we design a Neural-NGBoost framework by replacing the base learner with
lightweight neural networks and introducing joint gradient estimation for boosting procedure. Based on natural
gradient boosting, we iteratively update the neural based learner by inferring natural gradient and update the

parameter score with its probabilistic distribution. Experimental results show Neural-NGBoost achieves superior
performance across various datasets compared to other boosting methods.

1. Introduction

Regression in supervised learning typically involves predicting a
single best guess, known as point estimation. For instance, a financial
regression model might predict tomorrow’s stock price as $150 or
a weather model might forecast the temperature as exactly 25 °C.
However, point estimates struggle to capture the uncertainty inher-
ent in such forecasts, which is crucial in real-world scenarios such
as finance and healthcare. Probabilistic regression addresses this by
modeling predictive distributions rather than point estimates, allowing
for explicit uncertainty quantification [1,2]. In particular, gradient
boosting methods [3-6] have been extended to probabilistic regression
tasks [2,7], iteratively improving model predictions through ensemble
learning. Among these, NGBoost [5] combines gradient boosting with
natural gradient optimization [8] to estimate multiple parameters of
predictive distributions (e.g. mean, variance) simultaneously. NGBoost
first estimates distribution parameters based on a scoring rule (e.g. neg-
ative log-likelihood). It then computes the natural gradient, which
captures the geometry of the distribution parameter space, to train
simple decision tree base learners, which then guide the update of
distribution parameters iteratively. Despite NGBoost’s success in its
modular design, its reliance on decision trees constrains its capability
to model complex relationships, particularly in larger datasets, and
restricts its scalability and performance. Furthermore, while the orig-
inal NGBoost trains separate base learners for each parameter of the
target distribution gradients (e.g one for the mean x and another
for the log variance) at each boosting step, we presume that this

* Corresponding author.

decoupled boosting procedure likely means the base learners do not
share any learned feature correlations, which can limit their ability
to model complex, interdependent interactions within the predictive
distribution, especially in high-dimensional data.

To address these, we propose a novel boosting framework that
leverages neural networks and joint gradient estimation to overcome
the limitations of simple tree-based base learners. Specifically, Neural
networks are well-known for their success in many tasks [9-12] and for
modeling complex nonlinear patterns in high-dimensional data. To this
end, we replace NGBoost’s original boosting procedure with a unified
neural network base learner that jointly estimates the gradients for all
parameters. Our unified boosting procedure addresses the limitations
of decoupled boosting procedure which may constrain the model’s
ability to exploit meaningful correlations among the gradients of dis-
tributional parameters. By jointly leveraging these interdependencies,
our framework enables the model to better capture such relationships
and correlations in a more discriminative manner, resulting in im-
proved performance and faster convergence during training. To ensure
both practicality and efficiency, our proposed method is designed
to be computationally efficient, allowing Neural-NGBoost to handle
large-scale datasets without introducing excessive overhead. Notably,
Neural-NGBoost yields substantial speedups in both training and infer-
ence time when handling larger and higher-dimensional datasets (see
Fig. 6). Extensive experiments show that Neural-NGBoost outperforms
NGBoost and other methods across various datasets.

The main contributions of this work are:

E-mail addresses: jamshid24@inha.edu (J. Ganiev), k5000plus@inha.edu (D.-W. Kim), shbae@inha.ac.kr (S.-H. Bae).

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.icte.2025.08.003

Received 18 April 2025; Received in revised form 24 July 2025; Accepted 10 August 2025

Available online 19 August 2025

2405-9595/© 2025 The Authors. Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

J. Ganiev et al.

D = {x; > yi}ita

cEmMENT

Dataset

ICT Express 11 (2025) 974-980

Neural Base Learner

t

'
i 1
'
Slag Neural Neural Neural J Output layer 2
-> Base Learner Base Learner Base Learner A
o b (x;) b (x) M) (x) ! Activation Layer
Fly Asl
1| |h=16 FC layer
Target: ™ Target: 1™ Target: I™ : T
Water ! S
H ' Activation Layer
: a '
Compressive MZHB | |h=32 FC layer
Strength Age ! 1
" Update P: t Update Parameters Update P: t 5
¢ . stag: pdate Parameters e pdate Parameters ' Dropout
. > 1 0 ~ — H ivati
Labels: y o—w® = w® qrg ,,\ans(\p,yl_) w® =g W — D _ gy 1 g ™D gy Activation Layer
= 1 [|h=64 FC layer
i
S(¥,y) |: Scoring rule S evaluates how well the distribution parameters W aligns with the observed outcomes y. Eq. (1).] T
; Input Features. | a :Learning rate. | ®: Element-wise multiplication. ; Dropout
m: Natural gradients (r,"")); gradient of scoring rule scaled by inverse Fisher Information. Eq. (4). E Activation Layer
() : Scaling Factor; an optimal step size (per boosting iteration m) that minimizes the overall loss. Eq. (6). Final Boosted Ensemble | ! | |h — 128 FC layer
Neural Base Learner with joint gradient estimation: b (x;) ~ l"l.('"), trained for E epochs per boosting iteration m. (5).] ?
'
'

Fig. 1. Neural-NGBoost framework with unified neural network base learners. We first initialize the distribution parameters by minimizing Eq. (2). At each boosting iteration, we
compute the natural gradient of the scoring rule Eq. (4) and use it to train the base learner with the loss function defined in Eq. (5). Finally, we update the distribution parameters
from Eq. (7). The dimension of hidden state h can be tuned based on dataset size and complexity.

» A novel and practical integration of a single, unified lightweight
neural network as base learners within the framework of proba-
bilistic gradient boosting.

+ A joint gradient estimation for the boosting procedure to more ef-
fectively capture interdependencies across predictive distribution
parameters and improve learning efficiency.

+ Extensive experiments across regression and classification tasks
on multiple benchmark datasets demonstrate more enhanced
performance, scalability, and uncertainty calibration of Neural-
NGBoost compared to NGBoost and most other established meth-
ods.

2. Related works

Boosting frameworks [4,13,14] have achieved the widespread suc-
cess in regression tasks. For instance, XGBoost [4] uses optimized
tree-based algorithms and parallel processing for efficient and accurate
predictions. LightGBM [13] adopts a histogram-based approach, signifi-
cantly reducing memory usage and accelerating training. GrowNet [14]
leverages shallow neural networks as weak learners and incorporates a
corrective step to refine predictions by globally fine-tuning all previ-
ously added learners via back-propagation. Despite their effectiveness,
these methods rely on the task of only point estimates, not probabilistic
ones.

For this, several probabilistic approaches have been proposed. NG-
Boost [5] combines gradient boosting with natural gradient, showing
strong performance in probabilistic prediction tasks. GAMLSS [15]
extends generalized linear models by allowing distribution parameters
to vary with predictors, enabling nuanced modeling of response dis-
tributions. Distributional random forests [16] replace point estimates
with conditional distributions, but rely on pre-specified distributional
assumptions, which can limit model accuracy if chosen incorrectly.
Neural network-based approaches have also emerged as strong alter-
natives for uncertainty estimation. Dropout sampling [17], a Bayesian
approximation method, repeatedly samples the outputs of a neural
network during inference by randomly dropping neurons, thus cap-
turing uncertainty with minimal architectural changes. Deep ensem-
bles [18] train multiple neural networks independently and aggregate
their outputs, effectively modeling both data and model-related uncer-
tainty [19]. However, neural network-based approaches often require
substantial computational resources, limiting their practicality in real-
world applications [20,21]. By contrast, our method preserves training
efficiency while reducing inference time.

Among these methods, NGBoost stands out for its modular design,
allowing flexibility in base learners, distributions, and scoring rules.

975

However, its performance often lags behind traditional machine learn-
ing approaches like Gradient Boosting or Random Forests [3,22]. To
this end, our proposed Neural-NGBoost method replaces standard deci-
sion tree base learners with lightweight but effective neural networks
and joint gradient estimation during each boosting procedure. Our
method offers computational efficiency in both large-scale training and
inference time while building on NGBoost’s flexibility and leveraging
the representational ability of neural networks.

3. Methodology
3.1. Preliminaries

The overall architecture of Neural-NGBoost is illustrated in Fig. 1.
To estimate the probability distribution X;(y; | x;) ~ N (u,logo) for
each data point, we first construct the initial parameters ¥° = (4, logc)
by minimizing the following proper scoring rule as:

SW,y) = —lOgX,-(yl- | X;), (D)

n
v© = argmin Y Sy, ®)
i=1
Here, the scoring rule .S indicates how well the distribution parameter-
ized by ¥ aligns with the observed outcomes y [23]. In practice, mini-
mizing this score is equivalent to maximizing the likelihood estimation
(MLE) [24]. As a result, we obtain a globally marginal distribution
to set ¥V where its parameter values are uniformly shared across all
samples. Then, we compute the ordinary gradient of the scoring rule
gf'") for each boosting iteration m as follows:

g™ = vy, S(¥, y), 3)

However, directly adopting Eq. (3) to update the parameters can be
suboptimal, as the gradient direction in parameter space may not align
with the optimal direction in distribution space. To this end, the natural
gradient of scoring rule FI.('”) can be defined as:
r™ IS(lIli(m_l))_l g™, 4)
where Ig (‘I’;mﬁl))_l denotes the inverse Fisher information matrix,
which adjusts the scoring rule’s gradient to reflect the local curvature of
the parameter space. This enables the gradient to capture the manifold
structure of the distribution, ensuring invariance under reparameter-
ization. After that, we leverage these natural gradients as regression
targets for the base learner as follows:

N
1 2
Lhase = 5 2 |16 = 11 ®)
i=1

J. Ganiev et al.

Table 1

Neural base learner hyper-parameter configurations for each dataset.
Dataset Depth L Hidden dimensions {h,} M
Concrete 2 {32 - 16} 200
Wine 2 {32 - 16} 200
Kin8nm 2 {32 - 16} 300
Power 2 {32 - 16} 300
Protein 3 {64 - 32 - 16} 300
Slice Localz. 3 {64 - 32 - 16} 300
Year MSD 4 {128 - 64 —» 32 —» 16} 300

For the base learner, we adopt our proposed neural base learner as
described in Section 3.2. At each iteration m, we train a base learner
b™ to predict FI.('") from input features x;, by minimizing Eq. (5) over
E epochs (E in the 80 to 150 range is recommended for achieving
optimal performance, as training beyond this range may yield only
marginal gains at increased computational cost). This process allows
b to approximate the natural gradient. Finally, ¥ for each data
point can be updated as:

n
7™ — argmin Z S ('l’i('"*l) -7 b (x)), J’,')) (6)
i=1

Ti(m) - Ti(m_l) —a- T(m) . b(m)(xi)’

)

where « is the learning rate and 7™ is a scaling factor determined via
Eq. (6) to control the update step. By iteratively stacking these base
learners across m = 1, ..., M boosting iterations, the resulting ensemble
progressively refines both the per-sample mean and variance estimates
of the predictive distribution.

3.2. Overadll architecture

Our neural base learner in Fig. 1, implemented using PyTorch
and scikit-learn [25,26], can be integrated seamlessly into the NG-
Boost framework. Building upon the foundational elements of NGBoost,
including natural gradient optimization [8] and the core boosting
methodology that we modified to utilize a unified neural base learner
with joint gradient estimation, our proposed method enhances the
capacity and robustness of the overall probabilistic boosting procedure,
particularly on large-scale datasets. To this end, we introduce a neural
base learner based on a multi-layer perceptron (MLP) [27] architecture
composed of fully-connected layers as:

Hy =x;,
H, = Dropout (Act (W,H,_, + b)),
fi=W H;_ +bp

(8

Here, 4, € RX is the vector output, where K indicates the number
of the target distribution parameters, and Act (-) denotes a non-linear
activation function. In our experiments, we primarily use ReLU and
LeakyReLU activations [10,28], but other non-linear activations can
also be utilized. For each layer #, the hidden representation H, is
computed via a linear transformation using learnable weights [29] W,
and biases b,, followed by a non-linear activation function. For large-
scale datasets, Dropout [30] can selectively be applied to deeper hidden
layers to mitigate overfitting and improve generalization. The final
output layer produces the prediction of base learner #; € RX as a K-
dimensional vector. With this approach, our neural base learner enables
the model to capture complex nonlinear patterns and extract richer
feature representations compared to traditional decision trees.
Moreover, to ensure adaptability across various datasets, the num-
ber of layers L and hidden dimensions h are configurable based on the
size and complexity of a dataset. Table 1 summarizes the specific neural
base learner configurations used in our experiments, which were found
to be effective and do not require aggressive tuning in general, offering
practitioners flexibility. In practice, overly large architectures (e.g. with

976

ICT Express 11 (2025) 974-980

512 hidden units) tend to overfit on smaller datasets, whereas overly
small architectures may underfit on large-scale datasets (see Fig. 5).
A core architectural and methodological innovation in Neural-
NGBoost lies in its unified neural network base learner with joint
gradient estimation. In the original NGBoost, each boosting iteration
relies on separate decision tree base learners to obtain the predicted
parameter ¥ for an input x;. For instance, for a Normal distribution
N(u,062) with K 2 parameters (u and logc), NGBoost involves
two independent base learners, b;,'") and bf”’g)g, collectively denoted as

b(m) — bg"), b(m)

oo) This inherent separation in NGBoost may limit the
model’s ability to capture shared feature learning across parameters. In
contrast, our method addresses this by training only a single, unified
base learner b with a shared feature network to predict the F
for all d1str1but10n parameters from x; by minimizing Eq. (5). Through
this approach, the base learner can Jomtly approximate the natural
gradients more efficiently by leveraging learned feature correlations at
each boosting step.

4. Experiments
4.1. Experimental setup

To evaluate our method, we conduct experiments on multiple pub-
licly available benchmark datasets across regression and classification
tasks. Our primary objective is to achieve lower NLL in probabilistic
estimation, lower RMSE in point estimation, and higher Top-1 accuracy
for classification. For regression experiments, we randomly select 10%
of each dataset for test set and 90% for training set. The selected
90% is then split into an 80/20 training/validation set to determine
the number of optimal boosting iterations that results in the lowest
validation score (see Table 1). After validation, the full 90% training
set is used to retrain the model with the determined boosting iterations
M, consistent with [5]. To ensure fairness, we report the mean and
standard deviation over 20 cross-validation folds with different random
seeds for all the regression datasets, except the Protein and Year MSD
datasets, which are trained 5 and 1 times, respectively, due to their
large size. For classification task, we report the mean and standard
deviation over 3 runs with different random seeds. All experiments
are conducted on Intel Xeon Gold 6330 CPU and a single NVIDIA RTX
A6000 GPU.

Hyperparameters. To avoid extensive hyperparameter searches,
we use fixed learning rates for each task. Specifically, for updating the
distribution parameters in the boosting stage, we set the learning rate
to 0.01. For training the neural base learners, we use learning rates
of 0.01, 0.03, and 0.05 for both regression and classification tasks.
While this setup may not be optimal for every dataset, it is sufficient
to demonstrate the effectiveness and scalability of Neural-NGBoost.

4.2. Probabilistic estimation

To evaluate probabilistic estimation performance, we use the aver-
age negative log-likelihood (NLL) as a metric on the test set. In this
case, the lower values indicate higher likelihoods assigned to the true
observations, thus better calibrated probabilistic predictions. Note that
NLL can be negative when the value of a probability density function
(PDF) X;(y; | x;) exceeds 1, which is valid for continuous distributions
with low variance. For a Normal distribution, when the observed data
point x; is equal to the mean value of the PDF —_ exp (—<X_“)2), it

o\V2r

202
attains the maximum value of ——. Therefore, if ¢ < 1/1/27, the peak

density exceeds 1, leading to a nggative NLL in Eq. (1). We compare
our results primarily against NGBoost and other well-established prob-
abilistic prediction methods [5,15,16,18]. For consistency, we report
the results from the original publications. As shown in Table 2, our
method achieves the best or second-best NLL performance across all
seven benchmark datasets. Notably, we outperform all other methods
on Concrete, Wine, Kin8 nm, Slice Localz, and Year MSD datasets, while
remaining highly competitive on the others. These results demonstrate
that our approach provides strong probabilistic predictions.

J. Ganiev et al.

ICT Express 11 (2025) 974-980

Table 2

Comparison of probabilistic estimation performance evaluated by NLL.
Dataset N Features Ours NGBoost Deep ensembles DistForest GAMLSS
Concrete 1030 8 2.79+0.16 3.04+0.17 3.06+0.18 3.38+0.05 6.72+0.59
Wine 1588 11 0.83+0.08 0.91+0.06 0.94+0.12 1.05+0.15 0.97 +£0.09
Kin8nm 8192 8 -1.24+0.02 —0.49 +0.02 —1.20+0.02 —-0.40+0.01 0.20+0.01
Power 9568 4 2.69+0.03 2.79+0.11 2.79+0.04 2.68 +0.05 4.25+0.19
Protein 45,730 9 2.64+0.01 2.81+0.03 2.83+0.02 2.59+0.04 5.04+£0.04
Slice Localz 53,500 385 1.39+0.01 2.14+0.02 - - -
Year MSD 515,345 90 3.31+0.00 3.43+0.00 3.35+0.00 - -

The best method for each dataset is highlighted in bold and the second-best is underlined.

Table 3

Comparison of point estimation performance evaluated by RMSE. Marking is as in Table 2.
Dataset N Features Ours NGBoost Gradient boosting Elastic net DistForest GrowNet
Concrete 1030 8 3.98£0.61 5.06+0.61 4.46 +0.29 12.1+0.05 6.61+0.83 4.48 +0.59
Wine 1588 11 0.55+0.04 0.63+0.04 0.53+0.02 0.58+£0.00 0.67 +£0.05 0.62+0.03
Kin8nm 8192 8 0.07 +0.00 0.16 +0.00 0.14+0.00 0.20+£0.00 0.16 +£0.00 0.08 +0.00
Power 9568 4 3.72+0.10 3.79+0.18 3.01+0.10 4.42+0.00 3.64+0.24 4.01+0.18
Protein 45,730 9 3.92+0.05 4.33+0.03 3.95+0.00 5.20+£0.00 3.89+0.04 4.12+0.18
Slice Localz 53,500 385 1.13+£0.05 2.11+0.13 2.24+0.04 - - 5.31+£0.35
Year MSD 515,345 90 8.22+0.00 8.94+0.00 8.73+0.00 9.49+0.00 - 8.81+0.00

Table 4
Accuracy and training time comparison between NGBoost and Neural-NGBoost on
MNIST.

Method Accuracy (%) Time (s)
NGBoost 85.74+0.29 9104 +57.7
Ours 92.07 +0.76 304+17.4
Kernel Density Estimation
== NGBoost
6 | == Ours
> == Ours w/ adversarial loss
24T
)]
AL
0 —

0.0 0.2 0.4 0.6 0.8 1.0
Mazx-class Confidence Score

Fig. 2. Uncertainty estimation on domain shift. The x-axis indicates maximum pre-
dicted class probability for each sample and y-axis shows the probability density of
those scores across NotMNIST dataset.

4.3. Point estimation

To evaluate point estimation performance, the prediction accuracy
is evaluated using Root Mean Squared Error (RMSE) as a metric on
the test set. Although our method is primarily trained to optimize
probabilistic estimation, the point estimates can be easily obtained
from the predicted mean values without any hyperparameter tuning.
We compare our method against [3,5,16,31], as well as the recent
neural network-based boosting approach [14]. For the datasets not
covered in their original paper, we evaluate their method using the
official implementations with the learning rate over [0.01, 0.05] and
the number of MLP layers from 1 to 4 with 32 hidden units per layer
and report the best results. Notably, as summarized in Table 3, our
approach significantly outperforms other methods in RMSE, confirming
the robustness of our method.

4.4. Classification

Classification on MNIST [32]. We conduct the performance com-
parison on the classification task of MNIST, a 10-class benchmark of
handwritten digits with 60,000 training and 10,000 test samples. Both
NGBoost and Neural-NGBoost are trained on the MNIST training set

977

and evaluated on its test set using the same hyperparameter settings.
As summarized in Table 4, it demonstrates that Neural-NGBoost consis-
tently outperforms NGBoost not only for the regression task, but also
for the classification task.

Uncertainty evaluation on domain shift. In practice, overconfi-
dent predictions on out-of-distribution (OOD) samples are a critical
challenge for the safe deployment of machine learning models [18].
Ideally, the model predictions should express higher uncertainty when
the data domain is completely different from the training data. To
this end, we train the models on the MNIST dataset and test it on
NotMNIST [33]. The NotMNIST dataset contains images of alphabetic
characters, sharing the same resolution as MNIST digits but repre-
senting entirely different class semantics. This allows us to assess
whether the model appropriately expresses higher uncertainty when
encountering inputs from a different domain. We present a comparative
evaluation of uncertainty estimation in Fig. 2. In particular, we com-
pare the maximum confidence scores from the predicted distribution
for each test sample in the NotMNIST dataset. Initially, our method
exhibits a tendency to produce overconfident predictions on certain test
samples compared to NGBoost. To mitigate this issue, we can integrate
an adversarial training loss into our proposed method to improve the
robustness of the base learner. The adversarial loss is defined as:

1N
Loy =—
adv N;

Here, ¢ is a small perturbation magnitude used to generate adversarial
samples following the Fast Gradient Sign Method (FGSM) [34]. This
encourages the model to moderate its predictive confidence on the
inputs during training, thereby strengthening classification robustness,
and aligns with the uncertainty estimation strategy for neural networks
proposed in [18]. For this experiment, ¢ in the range of 0.1 to 0.3 was
found to be effective. Finally, the base learner loss for the uncertainty
estimation is defined as:

2

))]

2

b (x,- + ¢ - sign (inﬁbase)) -r™

Liotal = Lpase T Ladv- (10)

By incorporating the adversarial training, our method avoids making
overly confident predictions when encountering unseen data and pro-
vides more calibrated uncertainty estimates compared to NGBoost. In
particular, our approach generates the confidence distribution that is
more concentrated at lower confidence values, indicating a more cau-
tious and robust estimation of uncertainty. These results demonstrate
that integrating adversarial training into our method can enhance the
reliability of uncertainty estimations.

J. Ganiev et al.

o o , . .
g & ‘ &
& X3

Labels: 0 1 2 3 4 5 6 7 8 9

Fig. 3. SHAP-based pixel attributions from Neural-NGBoost on MNIST. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

(a) Ours
High
Cement «taplirrny M' [T TV T 1
Age - ol o
Blast furnace slag mmu- °
Fly ash roq—-— §
Water a*—- %
Coarse aggregate . - &
Fine aggregate cee om .o
Superplasticizer - -‘?
T Low
=20 -10 0 10 20 30
SHAP value (impact on model output)
(b) NGBoost
High
Age b Wo ‘-* o,
Cement R I ot e oo
Water ® - sotafee ”
Blast furnace slag *— Chinons TE
Superplasticizer %
Fine aggregate o &
Coarse aggregate
Fly ash
Low

15 -10 -5 0 5 10 15
SHAP value (impact on model output)

-20 20

Fig. 4. SHAP summary plots for the Concrete dataset features (y-axis) and their
importance (x-axis).

4.5. Interpretability

To analyze the interpretability of our neural network-based learner,
we adopt a Shapley value-based feature attribution approach (SHAP)
[35] for classification and regression tasks. This approach enables
practitioners to interpret the model’s predictions regardless of whether
the underlying base learners are trees or neural networks, thereby
addressing concerns about interpretability.

Interpretability for classification. One limitation of tree-based
learner is the reduced interpretability on high-dimensional data such
as images, where decision trees cannot easily capture spatial patterns
or local feature contributions. In contrast, our Neural-NGBoost lever-
ages differentiable neural networks that enable gradient-based SHAP
methods to generate interpretable feature importance score and provide
a detailed interpretability analysis. As shown in Fig. 3, we visualize
the pixel-level contributions from Neural-NGBoost trained on MNIST.
Each row displays a test image alongside SHAP-based attribution maps
over the predicted class probabilities. Specifically, red regions indicate
pixels that increase the model’s confidence for a specific class, while
blue regions present areas that suppress its confidence. For instance,
in the first row, our method highlights the upper-left stroke con-
tributes positively to the ‘4’ class, while in the second row, circular
patterns reinforce the prediction of ‘8’. It indicates that probabilistic

978

ICT Express 11 (2025) 974-980

(a) Concrete

1.0 1.0
08 08
o6 —06
H z
o4 04
02 02
0.0 00
® AS 13 AS A6 050 ® AS 13 50
5 M/sV,‘,\V'L 2 ey \V”‘
(b) Kin8nm
1.0 1.0
08 08
-l
$» 06 J 06
%04 04
02 02
Ry © © 6 6 0w © © © .56
LI P /,51/2\1/15 A 51/\@/31/;\0/35
(c) Protein
1.0 1.0
08 08
-
$ 06 - 06
o4 04
02 02
0.0 00
? A 2 AS 56 ® A 2 AS A 50
0 ‘Vﬁ 5’\1 2 0 “/3.1/5\1/1

Hidden Layers
[—- Validation

Hidden Layers

g Test

Fig. 5. Validation and test performance (RMSE on the left, NLL on the right) across
different hidden layer configurations for the neural base learner on (a) Concrete, (b)
Kin8 nm, and (c) Protein datasets.

boosting models with neural networks can provide more detailed class-
specific interpretability in classification task than traditional tree-based
learners.

Interpretability for regression. We demonstrate the quantitative
results of interpretability with our method and NGBoost for tabular
data. For instance, SHAP values can also be used to visualize the contri-
bution of each feature to the final model decision, offering comparable
or even better interpretability to tree-based learners. As shown in Fig.
4, our method makes more effective use of a diverse set of features
compared to NGBoost. This means that our method utilizes a broader
range of informative signals to provide a more accurate prediction.

5. Ablation study

We analyze the effects of the various number of layers and hidden
units for the neural base learner and evaluate validation and test
performance averaged over 5-fold cross-validation on three datasets.
Fig. 5 shows that selecting the proper number of layers and hidden units
can initially help reduce RMSE and NLL. However, with the excessive
number of layers and hidden units, the trained model shows a tendency
to overfit, resulting in reduced performance on both validation and test
sets, and a significant increase in training time. Specifically, a 2-layer
neural network with 32—16 units achieves the optimal balance be-
tween model capacity and generalization for the Concrete and Kin8 nm
datasets (Fig. 5(a, b)), while a deeper 3-layer network provides better
performance for the Protein dataset (Fig. 5(c)). Further increasing the
number of hidden units, such as using a 512—256 neural network archi-
tecture, leads to degraded performance across both splits, indicating the
overfitting trend. The specific base learner configurations reported in
Table 1 were selected based on these validation experiments. Note that
we apply min-max normalization with ¢ = 102 for better visualization
for Fig. 5.

J. Ganiev et al.

Prediction Time

[Neural-NGBoost
Il NGBoost

Training Time
7114

68.11

[E3 Neural-NGBoost
I NGBoost

40.78

10.00s

8 10008 3 B3
€ £
§ § 2.50
417
e 312 e 1.40
@ @
£ £ 1.00s
= =
122
100s 89
34 39 0.10s 0.07
Kin8nm Protein Slice Localz. Year MSD Kin8nm Protein Slice Localz. Year MSD
Datasets

Fig. 6. Training and prediction time (log scale)
Neural-NGBoost.

comparison between NGBoost and

Fig. 6 presents the comparison of average training and prediction
time between our method and the original NGBoost across 5-fold cross-
validation. As shown, our method scales substantially better on large
datasets with high-dimensional features. In particular, it achieves an
impressive 58x speedup in training time on the Slice Localization
dataset, and an 18x speedup on the Year MSD dataset, clearly highlight-
ing its scalability. Furthermore, it substantially reduces the inference
time across datasets, achieving up to 90% reduction in prediction time.

Algorithm 1 Neural-NGBoost Training and Evaluation

from sklearn.preprocessing import StandardScaler

from neural_ngboost import NeuralBaselLearner,
fit_marginal, compute_natural_gradients,
find_optimal_scaling

Data preparation

X, y = ... # Load your data here (X=features, y=labels)
X = StandardScaler().fit_transform(X)

N_samples = len(X)

Step 1: Pre-boosting stage
Compute initial parameters for marginal distribution
Psi = fit_marginal(y) # Perform Eq.(1) and Eq.(2)

Step 2: Boosting stage

Refine the distribution parameters for each sample over
M boosting iterations

for m in range(M):

Initialize neural base learner per iteration based
on dataset size

base_learner = NeuralBaseLearner ()

base_learner.build_network (N_samples)

Store predictions from the previous iteration
Psi_previous = Psi.copy()

2.1 Compute natural gradients (Eq.(3) and Eq.(4))
Gamma = [compute_natural_gradients(Psi_previous[i], y
[i]) for i in range(N_samples)]

2.2 Train the unified base learner (Eq.(5)) with
joint gradient estimation

base_learner.fit (X, Gamma, learning_rate=0.03, epochs
=100)

2.3 Line search to find a scaling factor (Eq.(6))

tau = find_optimal_scaling(Psi_previous, base_learner

, X,y

2.4 Scaled update
scaled_update = [alpha * tau * base_learner.predict (X
[i]) for i in range(N_samples)]

2.5 Update parameters to get the new parameters for
each sample (Eq.(7))

Psi = [Psi_previous[i] - scaled_update[i] for i in
range (N_samples)]
Step 3: Evaluation

After boosting is complete, evaluate the final boosted

ensemble model

979

ICT Express 11 (2025) 974-980

predicted_distributions = final_boosted_ensemble.
pred_dist (X)

Evaluate how well they fit the true target values
NLL = compute_nll(predicted_distributions, y)
RMSE = compute_rmse(predicted_distributions, y)

6. Conclusion

This paper presents Neural-NGBoost, an enhanced version of the
NGBoost framework that replaces decision tree base learners with a uni-
fied neural network architecture. By leveraging joint gradient approx-
imation strategy within each boosting iteration, the proposed method
addresses the limitations of tree-based learners by exploiting the corre-
lations among gradients of distributional parameters to learn diverse
features, particularly in large-scale and high-dimensional datasets.
Experimental results across regression and classification benchmarks
demonstrate that Neural-NGBoost improves both probabilistic and
point estimation performance, while also providing better uncertainty
estimation. Notably, these gains come with the minimal computational
overhead, achieving these improvements without a significant increase
in training time and offering even faster inference time, making it
particularly suitable for large-scale, real-time applications. Specifically,
the neural network base learner with joint gradient approximation
facilitates precise updates of distribution parameters during boosting.
Overall, this work highlights the effectiveness of using neural networks
as unified base learners within probabilistic boosting, providing a
robust, scalable approach for accurate uncertainty estimation.

CRediT authorship contribution statement

Jamshidjon Ganiev: Writing — original draft, Visualization, Valida-
tion, Software. Deok-Woong Kim: Writing — review & editing, Formal
analysis, Data curation. Seung-Hwan Bae: Writing — original draft,
Supervision, Project administration, Methodology, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by the National Research Foun-
dation of Korea (NRF), South Korea grants funded by the Korea gov-
ernment (MSIT) (No. RS-2022-NR071978) and funded by the Ministry
of Education, South Korea (No. RS-2022-NR070869); supported in
part by Institute of Information & communications Technology Plan-
ning & Evaluation (IITP), South Korea grants funded by the Korea
government (MSIT) (No. RS-2022-11220448: Deep Total Recall, 10%,
No. RS-2022-00155915: Artificial Intelligence Convergence Innovation
Human Resources Development (Inha University)); supported in part
by INHA UNIVERSITY, South Korea Research Grant.

References

[1] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh,
P. Fieguth, X. Cao, A. Khosravi, U.R. Acharya, et al., A review of uncertainty
quantification in deep learning: Techniques, applications and challenges, Inf.
Fusion 76 (2021) 243-297.

T. Gneiting, M. Katzfuss, Probabilistic forecasting, Annu. Rev. Stat. Appl. 1 (1)
(2014) 125-151.

G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations, Constr.
Approx. 13 (1997) 57-98.

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell,
I. Cano, T. Zhou, et al., Xgboost: Extreme gradient boosting, 2015, pp. 1-4, R
package version 0.4-2 1 (4).

[2]

[3]

[4]

J. Ganiev et al.

[5]

[6]

[7]

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. Duan, A. Anand, D.Y. Ding, K.K. Thai, S. Basu, A. Ng, A. Schuler, Ngboost: Nat-
ural gradient boosting for probabilistic prediction, in: International Conference
on Machine Learning, PMLR, 2020, pp. 2690-2700.

O. Sprangers, S. Schelter, M. de Rijke, Probabilistic gradient boosting machines
for large-scale probabilistic regression, in: Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 2021, pp. 1510-1520.
M.A. Zamee, Y. Lee, D. Won, Self-supervised adaptive learning algorithm for
multi-horizon electricity price forecasting, IEEE Access (2024).

S.-I. Amari, Natural gradient works efficiently in learning, Neural Comput. 10
(2) (1998) 251-276.

Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nat. 521 (7553) (2015) 436-444.
V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann
machines, in: Proceedings of the 27th International Conference on Machine
Learning, ICML-10, 2010, pp. 807-814.

S.-H. Bae, Deformable part region learning and feature aggregation tree repre-
sentation for object detection, IEEE Trans. Pattern Anal. Mach. Intell. 45 (9)
(2023) 10817-10834.

V. Chinbat, S.-H. Bae, Ga3n: Generative adversarial autoaugment network,
Pattern Recognit. 127 (2022) 108637.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, Lightgbm:
A highly efficient gradient boosting decision tree, Adv. Neural Inf. Process. Syst.
30 (2017).

S. Badirli, X. Liu, Z. Xing, A. Bhowmik, K. Doan, S.S. Keerthi, Gradient boosting
neural networks: Grownet, 2020, arXiv preprint arXiv:2002.07971.

D.M. Stasinopoulos, R.A. Rigby, Generalized additive models for location scale
and shape (GAMLSS) in R, J. Stat. Softw. 23 (2008) 1-46.

L. Schlosser, T. Hothorn, R. Stauffer, A. Zeileis, Distributional regression forests
for probabilistic precipitation forecasting in complex terrain, 2019.

Y. Gal, Z. Ghahramani, Dropout as a bayesian approximation: Representing
model uncertainty in deep learning, in: International Conference on Machine
Learning, PMLR, 2016, pp. 1050-1059.

B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive
uncertainty estimation using deep ensembles, Adv. Neural Inf. Process. Syst. 30
(2017).

H. Lee, S. Lee, B.C. Song, Data and model uncertainty aware salient object
detection, IEEE Access 12 (2024) 15016-15025.

J.-Y. Baek, Y.-S. Yoo, S.-H. Bae, Generative adversarial ensemble learning for
face forensics, IEEE Access 8 (2020) 45421-45431.

980

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

ICT Express 11 (2025) 974-980

Y.-S. Baek, D.-H. Lee, Y. Jo, S.-C. Lee, W. Choi, D.-H. Kim, Artificial intelligence-
estimated biological heart age using a 12-lead electrocardiogram predicts
mortality and cardiovascular outcomes, Front. Cardiovasc. Med. 10 (2023)
1137892.

L. Breiman, Random forests, Mach. Learn. 45 (2001) 5-32.

T. Gneiting, A.E. Raftery, Strictly proper scoring rules, prediction, and estimation,
J. Amer. Statist. Assoc. 102 (477) (2007) 359-378.

M. Gebetsberger, J.W. Messner, G.J. Mayr, A. Zeileis, Estimation methods
for nonhomogeneous regression models: Minimum continuous ranked proba-
bility score versus maximum likelihood, Mon. Weather Rev. 146 (12) (2018)
4323-4338.

A. Paszke, Pytorch: An imperative style, high-performance deep learning library,
2019, arXiv preprint arXiv:1912.01703.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in python, J. Mach. Learn. Res. 12 (2011) 2825-2830.

D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by
back-propagating errors, Nat. 323 (6088) (1986) 533-536.

A.L. Maas, A.Y. Hannun, A.Y. Ng, et al., Rectifier nonlinearities improve neural
network acoustic models, in: Proc. Iecml, Vol. 30, Atlanta, GA, 2013, p. 3, 1.

X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, JMLR Workshop and Conference
Proceedings, 2010, pp. 249-256.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout:
A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (1) (2014) 1929-1958.

H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R.
Stat. Soc. Ser. B Stat. Methodol. 67 (2) (2005) 301-320.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (2002) 2278-2324.

Y. Bulatov, NotMNIST dataset, 2011, http://yaroslavvb.blogspot.com/2011/09/
notmnist-dataset.html.

1.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial
examples, 2014, arXiv preprint arXiv:1412.6572.

S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions,
Adv. Neural Inf. Process. Syst. 30 (2017).

