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 A B S T R A C T

NGBoost has shown promising results in probabilistic and point estimation tasks. However, it is vague 
still whether this method can be scalable to neural architecture system since its base learner is based on 
decision trees. To resolve this, we design a Neural-NGBoost framework by replacing the base learner with 
lightweight neural networks and introducing joint gradient estimation for boosting procedure. Based on natural 
gradient boosting, we iteratively update the neural based learner by inferring natural gradient and update the 
parameter score with its probabilistic distribution. Experimental results show Neural-NGBoost achieves superior 
performance across various datasets compared to other boosting methods.
1. Introduction

Regression in supervised learning typically involves predicting a 
single best guess, known as point estimation. For instance, a financial 
regression model might predict tomorrow’s stock price as $150 or 
a weather model might forecast the temperature as exactly 25 ◦C. 
However, point estimates struggle to capture the uncertainty inher-
ent in such forecasts, which is crucial in real-world scenarios such 
as finance and healthcare. Probabilistic regression addresses this by 
modeling predictive distributions rather than point estimates, allowing 
for explicit uncertainty quantification [1,2]. In particular, gradient 
boosting methods [3–6] have been extended to probabilistic regression 
tasks [2,7], iteratively improving model predictions through ensemble 
learning. Among these, NGBoost [5] combines gradient boosting with 
natural gradient optimization [8] to estimate multiple parameters of 
predictive distributions (e.g. mean, variance) simultaneously. NGBoost 
first estimates distribution parameters based on a scoring rule (e.g. neg-
ative log-likelihood). It then computes the natural gradient, which 
captures the geometry of the distribution parameter space, to train 
simple decision tree base learners, which then guide the update of 
distribution parameters iteratively. Despite NGBoost’s success in its 
modular design, its reliance on decision trees constrains its capability 
to model complex relationships, particularly in larger datasets, and 
restricts its scalability and performance. Furthermore, while the orig-
inal NGBoost trains separate base learners for each parameter of the 
target distribution gradients (e.g. one for the mean 𝜇 and another 
for the log variance) at each boosting step, we presume that this 
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decoupled boosting procedure likely means the base learners do not 
share any learned feature correlations, which can limit their ability 
to model complex, interdependent interactions within the predictive 
distribution, especially in high-dimensional data.

To address these, we propose a novel boosting framework that 
leverages neural networks and joint gradient estimation to overcome 
the limitations of simple tree-based base learners. Specifically, Neural 
networks are well-known for their success in many tasks [9–12] and for 
modeling complex nonlinear patterns in high-dimensional data. To this 
end, we replace NGBoost’s original boosting procedure with a unified 
neural network base learner that jointly estimates the gradients for all 
parameters. Our unified boosting procedure addresses the limitations 
of decoupled boosting procedure which may constrain the model’s 
ability to exploit meaningful correlations among the gradients of dis-
tributional parameters. By jointly leveraging these interdependencies, 
our framework enables the model to better capture such relationships 
and correlations in a more discriminative manner, resulting in im-
proved performance and faster convergence during training. To ensure 
both practicality and efficiency, our proposed method is designed 
to be computationally efficient, allowing Neural-NGBoost to handle 
large-scale datasets without introducing excessive overhead. Notably, 
Neural-NGBoost yields substantial speedups in both training and infer-
ence time when handling larger and higher-dimensional datasets (see 
Fig.  6). Extensive experiments show that Neural-NGBoost outperforms 
NGBoost and other methods across various datasets.

The main contributions of this work are:
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Fig. 1. Neural-NGBoost framework with unified neural network base learners. We first initialize the distribution parameters by minimizing Eq. (2). At each boosting iteration, we 
compute the natural gradient of the scoring rule Eq. (4) and use it to train the base learner with the loss function defined in Eq. (5). Finally, we update the distribution parameters 
from Eq. (7). The dimension of hidden state 𝐡 can be tuned based on dataset size and complexity.
• A novel and practical integration of a single, unified lightweight 
neural network as base learners within the framework of proba-
bilistic gradient boosting.

• A joint gradient estimation for the boosting procedure to more ef-
fectively capture interdependencies across predictive distribution 
parameters and improve learning efficiency.

• Extensive experiments across regression and classification tasks 
on multiple benchmark datasets demonstrate more enhanced 
performance, scalability, and uncertainty calibration of Neural-
NGBoost compared to NGBoost and most other established meth-
ods.

2. Related works

Boosting frameworks [4,13,14] have achieved the widespread suc-
cess in regression tasks. For instance, XGBoost [4] uses optimized 
tree-based algorithms and parallel processing for efficient and accurate 
predictions. LightGBM [13] adopts a histogram-based approach, signifi-
cantly reducing memory usage and accelerating training. GrowNet [14] 
leverages shallow neural networks as weak learners and incorporates a 
corrective step to refine predictions by globally fine-tuning all previ-
ously added learners via back-propagation. Despite their effectiveness, 
these methods rely on the task of only point estimates, not probabilistic 
ones.

For this, several probabilistic approaches have been proposed. NG-
Boost [5] combines gradient boosting with natural gradient, showing 
strong performance in probabilistic prediction tasks. GAMLSS [15] 
extends generalized linear models by allowing distribution parameters 
to vary with predictors, enabling nuanced modeling of response dis-
tributions. Distributional random forests [16] replace point estimates 
with conditional distributions, but rely on pre-specified distributional 
assumptions, which can limit model accuracy if chosen incorrectly. 
Neural network-based approaches have also emerged as strong alter-
natives for uncertainty estimation. Dropout sampling [17], a Bayesian 
approximation method, repeatedly samples the outputs of a neural 
network during inference by randomly dropping neurons, thus cap-
turing uncertainty with minimal architectural changes. Deep ensem-
bles [18] train multiple neural networks independently and aggregate 
their outputs, effectively modeling both data and model-related uncer-
tainty [19]. However, neural network-based approaches often require 
substantial computational resources, limiting their practicality in real-
world applications [20,21]. By contrast, our method preserves training 
efficiency while reducing inference time.

Among these methods, NGBoost stands out for its modular design, 
allowing flexibility in base learners, distributions, and scoring rules. 
975 
However, its performance often lags behind traditional machine learn-
ing approaches like Gradient Boosting or Random Forests [3,22]. To 
this end, our proposed Neural-NGBoost method replaces standard deci-
sion tree base learners with lightweight but effective neural networks 
and joint gradient estimation during each boosting procedure. Our 
method offers computational efficiency in both large-scale training and 
inference time while building on NGBoost’s flexibility and leveraging 
the representational ability of neural networks.

3. Methodology

3.1. Preliminaries

The overall architecture of Neural-NGBoost is illustrated in Fig.  1. 
To estimate the probability distribution 𝑋𝑖(𝑦𝑖 ∣ 𝑥𝑖) ∼  (𝜇, log 𝜎) for 
each data point, we first construct the initial parameters 𝛹 0 = (𝜇, log 𝜎) 
by minimizing the following proper scoring rule as: 
𝑆(𝛹, 𝑦𝑖) = − log𝑋𝑖(𝑦𝑖 ∣ 𝑥𝑖), (1)

𝛹 (0) = argmin
𝛹

𝑛
∑

𝑖=1
𝑆(𝛹, 𝑦𝑖), (2)

Here, the scoring rule 𝑆 indicates how well the distribution parameter-
ized by 𝛹 aligns with the observed outcomes 𝑦 [23]. In practice, mini-
mizing this score is equivalent to maximizing the likelihood estimation 
(MLE) [24]. As a result, we obtain a globally marginal distribution 
to set 𝛹 0 where its parameter values are uniformly shared across all 
samples. Then, we compute the ordinary gradient of the scoring rule 
𝑔(𝑚)𝑖  for each boosting iteration 𝑚 as follows: 

𝑔(𝑚)𝑖 = ∇𝛹 𝑆
(

𝛹 (𝑚−1)
𝑖 , 𝑦𝑖

)

, (3)

However, directly adopting Eq. (3) to update the parameters can be 
suboptimal, as the gradient direction in parameter space may not align 
with the optimal direction in distribution space. To this end, the natural 
gradient of scoring rule 𝛤 (𝑚)

𝑖  can be defined as: 

𝛤 (𝑚)
𝑖 ← 𝑆

(

𝛹 (𝑚−1)
𝑖

)−1
⋅ 𝑔(𝑚)𝑖 , (4)

where 𝑆
(

𝛹 (𝑚−1)
𝑖

)−1 denotes the inverse Fisher information matrix, 
which adjusts the scoring rule’s gradient to reflect the local curvature of 
the parameter space. This enables the gradient to capture the manifold 
structure of the distribution, ensuring invariance under reparameter-
ization. After that, we leverage these natural gradients as regression 
targets for the base learner as follows: 

𝑏𝑎𝑠𝑒 =
1

𝑁
∑

|

|

|

|𝑏(𝑚)(𝑥𝑖) − 𝛤 (𝑚)
𝑖 |

|

|

|

2

2
, (5)
𝑁 𝑖=1
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Table 1
Neural base learner hyper-parameter configurations for each dataset.
 Dataset Depth 𝐿 Hidden dimensions {ℎ𝓁} 𝑀  
 Concrete 2 {32 → 16} 200 
 Wine 2 {32 → 16} 200 
 Kin8nm 2 {32 → 16} 300 
 Power 2 {32 → 16} 300 
 Protein 3 {64 → 32 → 16} 300 
 Slice Localz. 3 {64 → 32 → 16} 300 
 Year MSD 4 {128 → 64 → 32 → 16} 300 

For the base learner, we adopt our proposed neural base learner as 
described in Section 3.2. At each iteration 𝑚, we train a base learner 
𝑏(𝑚) to predict 𝛤 (𝑚)

𝑖  from input features 𝑥𝑖, by minimizing Eq. (5) over 
𝐸 epochs (𝐸 in the 80 to 150 range is recommended for achieving 
optimal performance, as training beyond this range may yield only 
marginal gains at increased computational cost). This process allows 
𝑏(𝑚) to approximate the natural gradient. Finally, 𝛹 (𝑚) for each data 
point can be updated as: 

𝜏(𝑚) ← argmin
𝜏

𝑛
∑

𝑖=1
𝑆
(

𝛹 (𝑚−1)
𝑖 − 𝜏 ⋅ 𝑏(𝑚)(𝑥𝑖), 𝑦𝑖

)

, (6)

𝛹 (𝑚)
𝑖 ← 𝛹 (𝑚−1)

𝑖 − 𝛼 ⋅ 𝜏(𝑚) ⋅ 𝑏(𝑚)(𝑥𝑖), (7)

where 𝛼 is the learning rate and 𝜏(𝑚) is a scaling factor determined via 
Eq. (6) to control the update step. By iteratively stacking these base 
learners across 𝑚 = 1,… ,𝑀 boosting iterations, the resulting ensemble 
progressively refines both the per-sample mean and variance estimates 
of the predictive distribution.

3.2. Overall architecture

Our neural base learner in Fig.  1, implemented using PyTorch 
and scikit-learn [25,26], can be integrated seamlessly into the NG-
Boost framework. Building upon the foundational elements of NGBoost, 
including natural gradient optimization [8] and the core boosting 
methodology that we modified to utilize a unified neural base learner 
with joint gradient estimation, our proposed method enhances the 
capacity and robustness of the overall probabilistic boosting procedure, 
particularly on large-scale datasets. To this end, we introduce a neural 
base learner based on a multi-layer perceptron (MLP) [27] architecture 
composed of fully-connected layers as: 
⎧

⎪

⎨

⎪

⎩

0 = 𝑥𝑖,

𝓁 = Dropout
(

Act
(

𝑊𝓁𝓁−1 + 𝑏𝓁
))

,

𝜂̂𝑖 = 𝑊𝐿𝐿−1 + 𝑏𝐿

(8)

Here, 𝜂̂𝑖 ∈ R𝐾 is the vector output, where 𝐾 indicates the number 
of the target distribution parameters, and Act (⋅) denotes a non-linear 
activation function. In our experiments, we primarily use ReLU and 
LeakyReLU activations [10,28], but other non-linear activations can 
also be utilized. For each layer 𝓁, the hidden representation 𝓁 is 
computed via a linear transformation using learnable weights [29] 𝑊𝓁
and biases 𝑏𝓁 , followed by a non-linear activation function. For large-
scale datasets, Dropout [30] can selectively be applied to deeper hidden 
layers to mitigate overfitting and improve generalization. The final 
output layer produces the prediction of base learner 𝜂̂𝑖 ∈ R𝐾 as a 𝐾-
dimensional vector. With this approach, our neural base learner enables 
the model to capture complex nonlinear patterns and extract richer 
feature representations compared to traditional decision trees.

Moreover, to ensure adaptability across various datasets, the num-
ber of layers 𝐿 and hidden dimensions h are configurable based on the 
size and complexity of a dataset. Table  1 summarizes the specific neural 
base learner configurations used in our experiments, which were found 
to be effective and do not require aggressive tuning in general, offering 
practitioners flexibility. In practice, overly large architectures (e.g. with 
976 
512 hidden units) tend to overfit on smaller datasets, whereas overly 
small architectures may underfit on large-scale datasets (see Fig.  5).

A core architectural and methodological innovation in Neural-
NGBoost lies in its unified neural network base learner with joint 
gradient estimation. In the original NGBoost, each boosting iteration 
relies on separate decision tree base learners to obtain the predicted 
parameter 𝛹 for an input 𝑥𝑖. For instance, for a Normal distribution 
 (𝜇, 𝜎2) with 𝐾 = 2 parameters (𝜇 and log 𝜎), NGBoost involves 
two independent base learners, 𝑏(𝑚)𝜇  and 𝑏(𝑚)log 𝜎 , collectively denoted as 
𝑏(𝑚) =

(

𝑏(𝑚)𝜇 , 𝑏(𝑚)log 𝜎

)

. This inherent separation in NGBoost may limit the 
model’s ability to capture shared feature learning across parameters. In 
contrast, our method addresses this by training only a single, unified 
base learner 𝑏(𝑚)𝜇,log 𝜎 with a shared feature network to predict the 𝛤

(𝑚)
𝑖

for all distribution parameters from 𝑥𝑖 by minimizing Eq. (5). Through 
this approach, the base learner can jointly approximate the natural 
gradients more efficiently by leveraging learned feature correlations at 
each boosting step.

4. Experiments

4.1. Experimental setup

To evaluate our method, we conduct experiments on multiple pub-
licly available benchmark datasets across regression and classification 
tasks. Our primary objective is to achieve lower NLL in probabilistic 
estimation, lower RMSE in point estimation, and higher Top-1 accuracy 
for classification. For regression experiments, we randomly select 10% 
of each dataset for test set and 90% for training set. The selected 
90% is then split into an 80/20 training/validation set to determine 
the number of optimal boosting iterations that results in the lowest 
validation score (see Table  1). After validation, the full 90% training 
set is used to retrain the model with the determined boosting iterations 
𝑀 , consistent with [5]. To ensure fairness, we report the mean and 
standard deviation over 20 cross-validation folds with different random 
seeds for all the regression datasets, except the Protein and Year MSD 
datasets, which are trained 5 and 1 times, respectively, due to their 
large size. For classification task, we report the mean and standard 
deviation over 3 runs with different random seeds. All experiments 
are conducted on Intel Xeon Gold 6330 CPU and a single NVIDIA RTX 
A6000 GPU.

Hyperparameters. To avoid extensive hyperparameter searches, 
we use fixed learning rates for each task. Specifically, for updating the 
distribution parameters in the boosting stage, we set the learning rate 
to 0.01. For training the neural base learners, we use learning rates 
of 0.01, 0.03, and 0.05 for both regression and classification tasks. 
While this setup may not be optimal for every dataset, it is sufficient 
to demonstrate the effectiveness and scalability of Neural-NGBoost.

4.2. Probabilistic estimation

To evaluate probabilistic estimation performance, we use the aver-
age negative log-likelihood (NLL) as a metric on the test set. In this 
case, the lower values indicate higher likelihoods assigned to the true 
observations, thus better calibrated probabilistic predictions. Note that 
NLL can be negative when the value of a probability density function 
(PDF) 𝑋𝑖(𝑦𝑖 ∣ 𝑥𝑖) exceeds 1, which is valid for continuous distributions 
with low variance. For a Normal distribution, when the observed data 
point 𝑥𝑖 is equal to the mean value of the PDF 1

𝜎
√

2𝜋
exp

(

− (𝑥−𝜇)2

2𝜎2

)

, it 
attains the maximum value of 1

𝜎
√

2𝜋
. Therefore, if 𝜎 < 1∕

√

2𝜋, the peak 
density exceeds 1, leading to a negative NLL in Eq. (1). We compare 
our results primarily against NGBoost and other well-established prob-
abilistic prediction methods [5,15,16,18]. For consistency, we report 
the results from the original publications. As shown in Table  2, our 
method achieves the best or second-best NLL performance across all 
seven benchmark datasets. Notably, we outperform all other methods 
on Concrete, Wine, Kin8 nm, Slice Localz, and Year MSD datasets, while 
remaining highly competitive on the others. These results demonstrate 
that our approach provides strong probabilistic predictions.
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Table 2
Comparison of probabilistic estimation performance evaluated by NLL.
 Dataset N Features Ours NGBoost Deep ensembles DistForest GAMLSS  
 Concrete 1030 8 2.79±0.16 3.04±0.17 3.06±0.18 3.38±0.05 6.72±0.59 
 Wine 1588 11 0.83±0.08 0.91±0.06 0.94±0.12 1.05±0.15 0.97±0.09 
 Kin8nm 8192 8 −1.24±0.02 −0.49±0.02 −1.20±0.02 −0.40±0.01 0.20±0.01 
 Power 9568 4 2.69±0.03 2.79±0.11 2.79±0.04 2.68±0.05 4.25±0.19 
 Protein 45,730 9 2.64±0.01 2.81±0.03 2.83±0.02 2.59±0.04 5.04±0.04 
 Slice Localz 53,500 385 1.39±0.01 2.14±0.02 – – –  
 Year MSD 515,345 90 3.31±0.00 3.43±0.00 3.35±0.00 – –  
The best method for each dataset is highlighted in bold and the second-best is underlined.
Table 3
Comparison of point estimation performance evaluated by RMSE. Marking is as in Table  2.
 Dataset N Features Ours NGBoost Gradient boosting Elastic net DistForest GrowNet  
 Concrete 1030 8 3.98±0.61 5.06±0.61 4.46±0.29 12.1±0.05 6.61±0.83 4.48±0.59 
 Wine 1588 11 0.55±0.04 0.63±0.04 0.53±0.02 0.58±0.00 0.67±0.05 0.62±0.03 
 Kin8nm 8192 8 0.07±0.00 0.16±0.00 0.14±0.00 0.20±0.00 0.16±0.00 0.08±0.00 
 Power 9568 4 3.72±0.10 3.79±0.18 3.01±0.10 4.42±0.00 3.64±0.24 4.01±0.18 
 Protein 45,730 9 3.92±0.05 4.33±0.03 3.95±0.00 5.20±0.00 3.89±0.04 4.12±0.18 
 Slice Localz 53,500 385 1.13±0.05 2.11±0.13 2.24±0.04 – – 5.31±0.35 
 Year MSD 515,345 90 8.22±0.00 8.94±0.00 8.73±0.00 9.49±0.00 – 8.81±0.00 
Table 4
Accuracy and training time comparison between NGBoost and Neural-NGBoost on 
MNIST.
 Method Accuracy (%) Time (s)  
 NGBoost 85.74±0.29 9104±57.7 
 Ours 92.07±0.76 304±17.4  

Fig. 2. Uncertainty estimation on domain shift. The 𝑥-axis indicates maximum pre-
dicted class probability for each sample and 𝑦-axis shows the probability density of 
those scores across NotMNIST dataset.

4.3. Point estimation

To evaluate point estimation performance, the prediction accuracy 
is evaluated using Root Mean Squared Error (RMSE) as a metric on 
the test set. Although our method is primarily trained to optimize 
probabilistic estimation, the point estimates can be easily obtained 
from the predicted mean values without any hyperparameter tuning. 
We compare our method against [3,5,16,31], as well as the recent 
neural network-based boosting approach [14]. For the datasets not 
covered in their original paper, we evaluate their method using the 
official implementations with the learning rate over [0.01, 0.05] and 
the number of MLP layers from 1 to 4 with 32 hidden units per layer 
and report the best results. Notably, as summarized in Table  3, our 
approach significantly outperforms other methods in RMSE, confirming 
the robustness of our method.

4.4. Classification

Classification on MNIST [32]. We conduct the performance com-
parison on the classification task of MNIST, a 10-class benchmark of 
handwritten digits with 60,000 training and 10,000 test samples. Both 
NGBoost and Neural-NGBoost are trained on the MNIST training set 
977 
and evaluated on its test set using the same hyperparameter settings. 
As summarized in Table  4, it demonstrates that Neural-NGBoost consis-
tently outperforms NGBoost not only for the regression task, but also 
for the classification task.

Uncertainty evaluation on domain shift. In practice, overconfi-
dent predictions on out-of-distribution (OOD) samples are a critical 
challenge for the safe deployment of machine learning models [18]. 
Ideally, the model predictions should express higher uncertainty when 
the data domain is completely different from the training data. To 
this end, we train the models on the MNIST dataset and test it on 
NotMNIST [33]. The NotMNIST dataset contains images of alphabetic 
characters, sharing the same resolution as MNIST digits but repre-
senting entirely different class semantics. This allows us to assess 
whether the model appropriately expresses higher uncertainty when 
encountering inputs from a different domain. We present a comparative 
evaluation of uncertainty estimation in Fig.  2. In particular, we com-
pare the maximum confidence scores from the predicted distribution 
for each test sample in the NotMNIST dataset. Initially, our method 
exhibits a tendency to produce overconfident predictions on certain test 
samples compared to NGBoost. To mitigate this issue, we can integrate 
an adversarial training loss into our proposed method to improve the 
robustness of the base learner. The adversarial loss is defined as: 

adv =
1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

‖

𝑏(𝑚)
(

𝑥𝑖 + 𝜖 ⋅ sign
(

∇𝑥𝑖base
))

− 𝛤 (𝑚)
𝑖

‖

‖

‖

‖

2

2
, (9)

Here, 𝜖 is a small perturbation magnitude used to generate adversarial 
samples following the Fast Gradient Sign Method (FGSM) [34]. This 
encourages the model to moderate its predictive confidence on the 
inputs during training, thereby strengthening classification robustness, 
and aligns with the uncertainty estimation strategy for neural networks 
proposed in [18]. For this experiment, 𝜖 in the range of 0.1 to 0.3 was 
found to be effective. Finally, the base learner loss for the uncertainty 
estimation is defined as: 

total = base + adv. (10)

By incorporating the adversarial training, our method avoids making 
overly confident predictions when encountering unseen data and pro-
vides more calibrated uncertainty estimates compared to NGBoost. In 
particular, our approach generates the confidence distribution that is 
more concentrated at lower confidence values, indicating a more cau-
tious and robust estimation of uncertainty. These results demonstrate 
that integrating adversarial training into our method can enhance the 
reliability of uncertainty estimations.



J. Ganiev et al. ICT Express 11 (2025) 974–980 
Fig. 3. SHAP-based pixel attributions from Neural-NGBoost on MNIST.  (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 4. SHAP summary plots for the Concrete dataset features (y-axis) and their 
importance (x-axis).

4.5. Interpretability

To analyze the interpretability of our neural network-based learner, 
we adopt a Shapley value-based feature attribution approach (SHAP)
[35] for classification and regression tasks. This approach enables 
practitioners to interpret the model’s predictions regardless of whether 
the underlying base learners are trees or neural networks, thereby 
addressing concerns about interpretability.

Interpretability for classification. One limitation of tree-based 
learner is the reduced interpretability on high-dimensional data such 
as images, where decision trees cannot easily capture spatial patterns 
or local feature contributions. In contrast, our Neural-NGBoost lever-
ages differentiable neural networks that enable gradient-based SHAP 
methods to generate interpretable feature importance score and provide 
a detailed interpretability analysis. As shown in Fig.  3, we visualize 
the pixel-level contributions from Neural-NGBoost trained on MNIST. 
Each row displays a test image alongside SHAP-based attribution maps 
over the predicted class probabilities. Specifically, red regions indicate 
pixels that increase the model’s confidence for a specific class, while 
blue regions present areas that suppress its confidence. For instance, 
in the first row, our method highlights the upper-left stroke con-
tributes positively to the ‘4’ class, while in the second row, circular 
patterns reinforce the prediction of ‘8’. It indicates that probabilistic 
978 
Fig. 5. Validation and test performance (RMSE on the left, NLL on the right) across 
different hidden layer configurations for the neural base learner on (a) Concrete, (b) 
Kin8 nm, and (c) Protein datasets.

boosting models with neural networks can provide more detailed class-
specific interpretability in classification task than traditional tree-based 
learners.

Interpretability for regression. We demonstrate the quantitative 
results of interpretability with our method and NGBoost for tabular 
data. For instance, SHAP values can also be used to visualize the contri-
bution of each feature to the final model decision, offering comparable 
or even better interpretability to tree-based learners. As shown in Fig. 
4, our method makes more effective use of a diverse set of features 
compared to NGBoost. This means that our method utilizes a broader 
range of informative signals to provide a more accurate prediction.

5. Ablation study

We analyze the effects of the various number of layers and hidden 
units for the neural base learner and evaluate validation and test 
performance averaged over 5-fold cross-validation on three datasets. 
Fig.  5 shows that selecting the proper number of layers and hidden units 
can initially help reduce RMSE and NLL. However, with the excessive 
number of layers and hidden units, the trained model shows a tendency 
to overfit, resulting in reduced performance on both validation and test 
sets, and a significant increase in training time. Specifically, a 2-layer 
neural network with 32→16 units achieves the optimal balance be-
tween model capacity and generalization for the Concrete and Kin8 nm 
datasets (Fig.  5(a, b)), while a deeper 3-layer network provides better 
performance for the Protein dataset (Fig.  5(c)). Further increasing the 
number of hidden units, such as using a 512→256 neural network archi-
tecture, leads to degraded performance across both splits, indicating the 
overfitting trend. The specific base learner configurations reported in 
Table  1 were selected based on these validation experiments. Note that 
we apply min–max normalization with 𝜖 = 10−2 for better visualization 
for Fig.  5.
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Fig. 6. Training and prediction time (log scale) comparison between NGBoost and 
Neural-NGBoost.

Fig.  6 presents the comparison of average training and prediction 
time between our method and the original NGBoost across 5-fold cross-
validation. As shown, our method scales substantially better on large 
datasets with high-dimensional features. In particular, it achieves an 
impressive 58× speedup in training time on the Slice Localization 
dataset, and an 18× speedup on the Year MSD dataset, clearly highlight-
ing its scalability. Furthermore, it substantially reduces the inference 
time across datasets, achieving up to 90% reduction in prediction time.

Algorithm 1 Neural-NGBoost Training and Evaluation 

from sklearn.preprocessing import StandardScaler
from neural_ngboost import NeuralBaseLearner ,

fit_marginal , compute_natural_gradients ,
find_optimal_scaling

# Data preparation
X, y = ... # Load your data here (X=features, y=labels)
X = StandardScaler().fit_transform(X)
N_samples = len(X)

# Step 1: Pre-boosting stage
# Compute initial parameters for marginal distribution
Psi = fit_marginal(y) # Perform Eq.(1) and Eq.(2)

# Step 2: Boosting stage
# Refine the distribution parameters for each sample over

M boosting iterations
for m in range(M):

# Initialize neural base learner per iteration based
on dataset size

base_learner = NeuralBaseLearner()
base_learner.build_network(N_samples)

# Store predictions from the previous iteration
Psi_previous = Psi.copy()

# 2.1 Compute natural gradients (Eq.(3) and Eq.(4))
Gamma = [compute_natural_gradients(Psi_previous[i], y

[i]) for i in range(N_samples)]

# 2.2 Train the unified base learner (Eq.(5)) with
joint gradient estimation

base_learner.fit(X, Gamma, learning_rate=0.03, epochs
=100)

# 2.3 Line search to find a scaling factor (Eq.(6))
tau = find_optimal_scaling(Psi_previous , base_learner

, X, y)

# 2.4 Scaled update
scaled_update = [alpha * tau * base_learner.predict(X

[i]) for i in range(N_samples)]

# 2.5 Update parameters to get the new parameters for
each sample (Eq.(7))

Psi = [Psi_previous[i] - scaled_update[i] for i in
range(N_samples)]

# Step 3: Evaluation
# After boosting is complete , evaluate the final boosted

ensemble model
979 
predicted_distributions = final_boosted_ensemble.
pred_dist(X)

# Evaluate how well they fit the true target values
NLL = compute_nll(predicted_distributions , y)
RMSE = compute_rmse(predicted_distributions , y)

6. Conclusion

This paper presents Neural-NGBoost, an enhanced version of the 
NGBoost framework that replaces decision tree base learners with a uni-
fied neural network architecture. By leveraging joint gradient approx-
imation strategy within each boosting iteration, the proposed method 
addresses the limitations of tree-based learners by exploiting the corre-
lations among gradients of distributional parameters to learn diverse 
features, particularly in large-scale and high-dimensional datasets. 
Experimental results across regression and classification benchmarks 
demonstrate that Neural-NGBoost improves both probabilistic and
point estimation performance, while also providing better uncertainty 
estimation. Notably, these gains come with the minimal computational 
overhead, achieving these improvements without a significant increase 
in training time and offering even faster inference time, making it 
particularly suitable for large-scale, real-time applications. Specifically, 
the neural network base learner with joint gradient approximation 
facilitates precise updates of distribution parameters during boosting. 
Overall, this work highlights the effectiveness of using neural networks 
as unified base learners within probabilistic boosting, providing a 
robust, scalable approach for accurate uncertainty estimation.
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