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ABSTRACT A data association, which links detections in consecutive frames, is a key issue in multi-object
tracking (MOT). For robust data association in a complex scene, a common approach is to learn object
appearance models for handling appearance variations of tracked objects and improving the discriminability
between objects. However, learning appearances of multiple objects during tracking is still a challenging
problem due to the frequent sample contamination by occlusions and low feature discriminability by
similar appearances between objects. In this paper, in order to learn each object appearance, we propose a
discriminative online appearance learning using a partial least square (PLS) method. In the proposed appear-
ance learning, we first present online sampling mining to collect training samples from tracking results.
Then, we consecutively learn PLS-based subspaces during tracking and discriminate object appearances
by projecting object features onto the learned spaces. Since frequent appearance updates for all tracked
objects increase the tracking complexity significantly, we propose measures to evaluate the discriminability
of learned object appearances and update only the appearances with low discriminability. We apply the
proposed appearance learning for online MOT and compare other appearance learning methods. In addition,
we evaluate the performance of our MOT method on public MOT benchmark challenge datasets and show
the competitive performance compared to other state-of-the-art batch and online tracking methods.

INDEX TERMS Multi-object tracking, appearance discriminability measures, online appearance learning,
partial least square analysis, data association, surveillance system.

I. INTRODUCTION

MULTI-OBJECT Tracking (MOT) has been an impor-
tant research area and applied for many applications

[1] such as surveillance system and autonomous vehicles.
Even though the substantial performance improvement has
been achieved during the last years due to the recent advances
in deep learning, the MOT results of the recent trackers
are still behind those produced by human annotation. Many
tracking failures are frequently occurred due to inaccurate
detections and associations. In general, recent MOT meth-
ods are based on the tracking-by-detection approach, which
builds trajectories by associating (or linking) detections.
They can be categorized into batch and online methods
according to the association manner.

Batch methods [2]–[6] build long trajectories by associat-
ing detections of whole frames using iterative associations.

Even though they show high tracking accuracy even in com-
plex scenes, applying these methods for real-time and casual
applications is not appropriate since detections in whole or
future frames are needed. On the other hand, online methods
[1], [7]–[12] build trajectories sequentially using frame-by-
frame association up to the present frame. Therefore, they can
be applied for real-time applications, but their performance is
lower than batch methods.

Since both methods construct trajectories by using (tem-
porally) global and/or local associations, identifying each
tracklet (i.e. linked detections in short frames) at frame is an
important process. To this end, appearance models for track-
lets are learned and then used for discriminating tracklets.
Recently, due to the advances of deep learning, some deep
learning-based appearance models [1], [11] have been devel-
oped and showed the impressive results. However, they are
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not suitable for applications with limited resources. In addi-
tion, a large training dataset and many training process are
required to apply them for MOT.

In this paper, we propose a discriminative online appear-
ance learning to distinguish appearances of tracked objects
and update the learned object appearances. The proposed
learning method consists of (1) appearance discriminabil-
ity measures to determine how much a learned appearance
model can discriminate other object appearances, (2) online
sample mining to collect training samples from the asso-
ciated tracklets, (3) online appearance learning to gener-
ate and update feature subspaces (i.e. weights) for tracklets
with the collected samples. More concretely, for learning a
subspace, we use the partial least square (PLS) method [13]
since it can learn more discriminative subspaces with labeled
dataset than principle component analysis (PCA). Further-
more, we present measures to evaluate the appearance model
discriminability, and update a PLS subspace when an object
appearance model is evaluated to have low discriminability
power. As a result, we canmaintain the appearancemodel dis-
criminability, and reduce the appearance learning complexity
by preventing unnecessary updates for PLS subspaces with
high discriminability.

We apply the proposed appearance learning method for
the confidence-based data association [1], and achieve the
better performance than state-of-the-art MOT methods on
public available MOT benchmark datasets. We also prove the
effectiveness and the benefits of the proposedmethods though
extensive evaluation.

II. RELATED WORKS
In recent years, tracking methods based on tracking-by-
detection can be divided into batch and online methods
in terms of the data association manner. Batch tracking
methods [2]–[6] build trajectories using detections of whole
frames together. Even though they provide the better results
than online methods in the most cases, it is hard to apply
for real-time applications since they perform iterative global
associations for detections of all the frames. In contrast,
online tracking methods [1], [7]–[10], [14] consider detec-
tions of past and current frames only when associating track-
lets. Therefore, they can be suitable for real-time applications.
However, they tend to yield identity switches and track frag-
ments by long-term occlusions since future frame informa-
tion is not used.

In online tracking, a robust data association is required in
order to prevent identity switches and track fragments. For the
robust data association, many affinity models such as appear-
ance, motion, and shape affinitymodels are exploited inmany
works [1], [5], [6], [8], [9], [14]. Among them, the appear-
ance model is crucial since a visual feature is a cue to dis-
criminate objects in many cases.

To design appearance models for MOT, a lot of appear-
ance learning methods have been developed. Due to sim-
plicity, some hand-crafted features (e.g. color histograms
and histogram of gradient(HoG) [15], [16]) are applied for

MOT. For instance, Huang et al. [17], Li et al. [18], and
Xing et al. [19] extract histograms for each tracklet and then
evaluate affinity between tracklets using correlation coeffi-
cient, x2 distance and Bhattacharyya coefficient. Bae and
Yoon [14] and Hu et al. [20] exploit subspace learning such
as incremental linear discriminant analysis and log-euclidean
riemannian subspace learning in order to reduce fea-
ture dimensionality and improve feature discriminability.
Chu et al. [11] and Chen et al. [21] learn discriminative
appearance models using convolutional neural networks as
deep appearance models for learning more rich representa-
tion. Bae and Yoon [1], Yoon et al. [22], Tang et al. [23],
and Leal-Taixé et al. [24] exploit the Siamese network [25]
to calculate the affinity between an object pair from the net-
work output directly. Recently, Son et al. [26] use a quadru-
plet network, an improved version of triplet network, for
the same purpose. Even though exploiting deep learning
improves appearance discriminability, many training samples
and costly GPUs are usually required.

In general, appearance learning methods for MOT can be
divided into global and object-specific appearance learning
methods. The global appearance learning methods [1], [14],
[27], [28] discriminate appearances of all tracked objects
with an appearance model (e.g. a ILDA matrix [14] and a
CNN model [1]). Because they learn one model only during
tracking, these methods usually require less training samples
and predict the affinity score faster than latter one. However,
the association accuracy is lower than the object-specific
learning since only one model is used when evaluating the
affinity. On the other hand, the object-specific appearance
learning methods [29]–[31] train an appearance model for
each object in general. Therefore, they produce more accu-
rate affinity score, but learning and inference complexity
increases in proportion to the number of tracked objects.

To resolve the limitations of the object specific appearance
learning, in this paper we propose an effective object-specific
appearance learning based on appearance discriminability
measures and subspace learning. We argue that the proposed
method can reduce the learning complexity efficiently while
maintaining the discriminabilty power of each appearance
model due to following reasons: (1) By using the appearance
discriminability measures, a few appearance models with
low discriminability can be updated only during tracking.
(2) By using our sample mining and the PLS method, each
appearance model can be learned discriminatively with small
training samples.

III. ONLINE MULTI-OBJECT TRACKING FRAMEWORK
In this work, tracking multiple objects is based on the
confidence-based data association [1]: a tracklet with high
confidence is locally associated with online provided detec-
tions to grow the tracklet sequentially, but a tracklet with
low confidence is globally associated with other tracklets to
link fragmented tracklets. For more accurate local and global
association, we combine our discriminative online appear-
ance learning with the confidence-based data association.
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FIGURE 1. The overall framework consists of confidence-based data association and discriminative online appearance learning. We divide tracklets to be
locally or globally associated according to their confidence. In Fig. 1(1), the confidence-based data association is depicted. Figure 1(2) shows projected
features on the PLS weight matrices and appearance affinity evaluation with the projected feature. In order to learn a discriminative appearance model
for each object, we propose appearance learning methods shown in Fig. 1(3), 1(4), and 1(5). Figure 1(3) shows appearance discriminability measures
computed by Eq. (6) and Eq. (7). For a tracklet with low discriminability, online sample mining and online appearance learning are performed to update
its appearance model with collected samples during tracking as shown in Fig. 1(4) and 1(5), respectively.

The overall framework of incorporating both methods is
shown in Fig. 1. In the next section, we present details of each
method for the framework.

A. CONFIDENCE BASED DATA ASSOCIATION
Given detections from a trained detector, a detection at
frame t is represented as dt =

[
dx , dy, dw, dh

]
, where dx ,

dy, dw and dh are x and y positions, width, and height,
respectively.We then define a tracklet χ i as a set of associated
detections up to frame t as χ i =

{
dik |1 ≤ t

i
s ≤ k ≤ t

i
e ≤ t

}
,

where t is and t
i
e are the time stamps of the start- and end-frame

of the tracklet. Then, an online multi-object tracking problem
can be considered to find a detection dit which can be associ-
ated with a tracklet χ i at each frame t .
To determine dit at each frame, we exploit the

confidence-based data association. To this end, we first eval-
uate the confidence of a tracklet conf (χ i) in consideration of
the length and continuity of a tracklet and the affinity with an

associated detection as follows:

conf (χ i) |H

(
1

L

∑
k∈[t ie,t is],vi(k)=1

M
(
χ i,dik

))
×

(
1−exp−β·

√
(L−λ)

)
, (1)

where vi (t) is a binary function for representing ‘existness’
of dik . If an associated detection for object i exists at frame t ,
vi (k) = 1. Otherwise, vi (t) = 0. L is the length of a tracklet
χ i as L =

∣∣χ i∣∣, and λ is the number of frames in which
the object i is missing due to occlusion by other objects or
unreliable detection as λ = t ie − t is + 1 − L. β is a control
parameter relying on the performance of a detector. When a
detector shows high accuracy, β should be set to a large value
(β is set to 1.2 as done in [1]). The average affinityM

(
χ i,dik

)
between the tracklet and detection is computed by Eq. (4).

Once the confidence scores of tracklets are computed by
Eq. (1), we perform local and global association adaptively
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according to their confidence. A tracklet with high confi-
dence χ i(hi) is considered as a reliable tracklet, and is locally
associated with a detection in order to grow it progressively.
When h tracklets with high confidence and a detection set
Dt = {d

j
t }
m
j=1 are given at frame t , we compute a local

association score matrix S as

S = [sij]h×m, sij = −M (χ i(hi),djt ), d
j
t ∈ Dt (2)

However, a tracklet with low confidence χ i(lo) is consid-
ered as a fragmented trajectory by occlusions. To link frag-
mented tracklets into one, we associate χ i(lo) with χ i(hi) or a
detection yjt not associated with any χ i(hi) in the local asso-
ciation. Assume that there exist η non-associated detections
(η ≤ m), and h and l tracklets with high and low confidence,
respectively. Then, we perform global association by consid-
ering following events:
• Event A: χ i(lo) is associated with χ j(hi),
• Event B: χ i(lo) is terminated,
• Event C: χ i(lo) is associated with yjt .
We then define a global association score matrix G for all

the events as follows:

G(l+η)×(h+l) =

[
Al×h Bl×l
−θη×h Cη×l

]
, (3)

Here, A = [aij] represents the event A, where aij =
−M (χ i(lo), χ j(hi)) is the association cost computed by the
affinity between them using Eq. (4). B = diag [b1, . . . , bl]
models the event B, where bi = −(1− conf (χ i(lo))) is the
cost to terminate χ i(lo), and C =

[
cij
]
represents the event C,

where cij = −M (χ i(lo), yjt ) is the association cost computed
by Eq. (4). A threshold θ = 0.5 is employed to select reliable
association pairs having high affinity scores.

Once the association score matrices (S orG) are computed,
we determine optimal matching pairs in each matrix using the
Hungarian algorithm [32] such that the total affinity score in
the matrix is maximized. Then, detections of the associated
pairs are linked each other in a sequential manner, and confi-
dences of all existing tracklets are updated by Eq. (1).

B. AFFINITY EVALUATION
Since the local Eq. (2) and global Eq. (3) association score
matrices are evaluated with affinities between objects, for the
more accurate affinity evaluation we use several models when
describing a tracklet. Here, χ i is represented as {A, S,Q},
where A, S and Q are appearance, shape and motion models,
respectively. Then, an overall affinity between a pair of two
objects can be defined with those models as

M (u, z) = MA (u, z) ·MS (u, z) ·MQ (u, z) , (4)

where u and z can be a tracklet or a detection. Each affinity is
computed as follows:

MA (u, z) = max
(
cos

(
fuproj, f

z
proj

)
, 0
)
,

MS (u, z) = exp

(
−

{
d̂uh − d̂

z
h

d̂uh + d̂
z
h

+
d̂uw − d̂

z
w

d̂uw + d̂
z
w

})
,

MQ (u, z) = N
(
d̂utail + vuF8; d̂

z
head ,O

F
)

×N
(
d̂zhead + vzB8; d̂

u
tail,O

B
)
, (5)

where d̂ means updated states with Kalman filtering [33].
The shape affinity MS (u, z) is calculated with their updated
width and height. The motion affinity MQ (u, z) is calcu-
lated with u tail (i.e. the last updated position) and z head
(i.e. the first updated position) with time gap8. The forward
velocity vuF is calculated from the head to tail of u, but
the backward velocity vzB is calculated from the tail to the
head of z. We assume that the difference between the pre-
dicted position computed with the velocity and the updated
position follows Gaussian distribution. For the appearance
affinity MA (u, z), we use the proposed appearance model.
We first extract a color histogram fuhist for each tracklet from
an image, and produce a compact and discriminative feature
fuproj by projecting fuhist onto the learned PLS subspace W u

(i.e. fuproj = W ufuhist ) from Eq. (10). We then evaluate
MA (u, z) by computing a cosine similarity between projected
features fuproj and fzproj. In the next section, we provide the
details of trainingW during online MOT.

IV. DISCRIMINATIVE APPEARANCE MODEL
As discussed, an appearance model is key for the local and
global association. Using an appearance model with low dis-
criminability decreases the overall association accuracy since
it yields high appearance affinity scores for different tracklets.
Recently, Bae and Yoon [1] and Chu et al. [11] exploit deep
learning methods such as a convolutional network in order to
learn a more robust appearance model. They also show that
using the deep appearance models with rich representation
shows the better MOT performance than using the shallow
appearance models [14], [20].

Nevertheless, we believe that shallow appearance models
could still achieve the comparable performance through effi-
cient learning compared to deep appearancemodels.1 In addi-
tion, a shallow appearance model with much fewer parameter
is more suitable for online MOT because it usually dose not
require a large training set and has the lower complexity of
learning a model. Therefore, we propose a shallow appear-
ance model using PLS and use it for online MOT.

In particular, to increase appearance discriminability fur-
ther, we learn and update a object-specific appearance model
for each object using the online sample mining and appear-
ance learning. However, the frequent appearance updates for
all objects increase the learning complexity significantly.
Therefore, we present measures to evaluate appearance dis-
criminability power and update only the appearance with low
discriminability.

A. APPEARANCE DISCRIMINABILITY MEASURES
To evaluate the discriminability of the learned appearance
models for whole tracklets, we define an overall appearance

1We provide the comparison with deep learning methods in Table 1.
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discriminability measure at frame t as 3t . From Eq. (5) we
can evaluate an appearance affinity MA(χ i, χ j) between two
tracklets χ i and χ j with the cosine distance of their projected
features fiproj and fjproj. Suppose that there exist n tracklets
consisting of h high confidence and l low confidence tracklets
at frame t . Then, we can compute 3t with the appearance
affinity between other different tracklets as

3t = 1−
1

n2 − n

 n∑
i=1

n∑
j=1

MA(χ i, χ j)−
n∑
i=1

MA(χ i, χ i)

,
(6)

where the second term means the average appearance affinity
between different tracklets. Thus, 3t lies in [0, 1]. When
3t ≥ TR1, we consider learned appearance models still
maintain high discriminability to distinguish each other.
Otherwise, they are considered to have low discriminability
and needed to be updated with collected samples during
online tracking.

However, because updating all the models is computa-
tionally expensive, we first find which tracklet’s appearance
model is old and then update the corresponding one only. For
achieving this, we present 3i

t to measure discriminability of
i-th tracklet’s appearance model as

3i
t = 1−

1
η

η∑
j=1

(
MA(χ i, yjt )

)
, (7)

where yjt is non-associated detections with χ i, and η is the
number of the non-associated detections. MA(χ i, yjt ) is also
computed by Eq. (5). Therefore, 3i

t measures directly how
much the appearance model can discriminate detections orig-
inated from other objects or cluttered background. In our
experiment, we set TR1 and TR2 to 0.25 and 0.2, respectively.
If 3i

t < TR2, we update the appearance model of the i-th
tracklet as provided in Sec. IV-C.

B. ONLINE SAMPLE MINING
For each object i, we denote positive Z i,+t and negative
sample Z i,−t sets as

Z i,+t =

{(
fkhist ,+1

)}g+
k=1

,

Z i,−t =

{(
fkhist ,−1

)}g−
k=1

, (8)

where g+ and g− are the number of positive and negative
samples. fkhist is a color histogram feature with dimension %
extracted from positive Di,+t and negative Di,−t box sets.

1) POSITIVE SAMPLE BOX
Given a bounding box di = [dx , dy, dw, dh], we represent a
rescaled box as dires = [dx , dy, dw · ψ, dh · ψ], where ψ is a
scale factor. We initially set to ψ = 0.7 and increase ψ with
the interval 0.1 until an overlap ratio αover for an intersection
region over an union region between di and dires is below

to 0.75. We generate a positive box setDi,+t =
{
di,di,kres

}g+−1
k=1

with the original and rescaled boxes, where di,kres has
αover ≥ 0.75 for di.

2) NEGATIVE SAMPLE BOX
To improve the appearance discriminability between an
object and other objects nearby (or scene clutter), we col-
lect negative sample boxes around the object. Given an
object bounding box di, we define a negative sample box as
dineg =

[
dx + β cos(ω), dy + β sin(ω), dw/ζw, dh/ζh

]
. Here,

β =
ρ

√
d2w+d

2
h

2 and ω = 2πk
g− . k ∈ {1, . . . , g−} is a negative

sample index. In our experiment, we set ρ, ζw and ζh to
1.2, 2 and 4, respectively. As a result, a negative sample

set Di,−t =

{
d i,kneg

}g−
k=1

is generated by collecting d i,kneg
with different k . Figure 2 demonstrates positive and negative
sample boxes around an object.

FIGURE 2. Positive and negative sample boxes generated by online
sample mining Sec. IV-B. By rescaling tracklet boxes, positive sample
boxes (green boxes) are collected. Negative sample boxes (red boxes) are
collected around the object.

C. ONLINE APPEARANCE LEARNING
In many MOT methods, online appearance learning is
required since the learned models are outdated by appearance
changes or occlusions. A main issue of online appearance
learning in MOT is to reduce the learning complexity while
keeping appearance discriminability. For reducing the com-
plexity, we determine the right time to update an appearance
model using the appearance discriminability measures Eq. (6)
and Eq. (7) instead of updating it per frame.2 In addition,
we exploit the PLS method to discriminate object appear-
ances since it produces more discriminative subspaces than
PCA [34]. Let us denote a sample set of the i-th tracklet
collected from t − 1 + 1 to t frames as Z it−1+1|t , where

Z it−1+1|t consists of Z i,+t−1+1|t and Z i,−t−1+1|t as defined in
Eq. (8). Using the NIPALS algorithm [13], we learn a new
PLS weight vector w with dimension % at each iteration as
follows:

w =
FT e
eT e

, w =
w
‖w‖

,

r = Fw, p =
oT r
rT r

, e =
op√
pT p

, (9)

2We provide the comparison of updating models with appearance discrim-
inability measures and updating them per frame in Table 4.

67320 VOLUME 6, 2018



S.-H. Lee et al.: Learning Discriminative Appearance Models for Online MOT

where F = {f1hist , f
2
hist , . . . , f

g
hist } is the appearance fea-

ture matrix with dimension g × % consisting of g his-
togram features with dimension % in Z it−1+1|t . r, o and e
are g-dimensional feature score, label, and label score vec-
tors, respectively. p is a label loading value. By learning
w for τ iterations, we can produce a PLS weight matrix
W = {w1,w2, . . . ,wτ }T .
Now, we can learn a weight matrix W i for the i-th tracklet

with Z it−1+1|t using Eq. (9). To updateW
i, we generate a new

weight matrix W i
new with a sample set Z it−1+1|t and merge it

with the learnedW i as follows:

W i
←− γW i

new + (1− γ )W i, (10)

where the updated W i is used for generating a PLS feature
fiproj = W ifihist and fiproj is used for affinity evaluation in
Eq. (5). Since the dimension (τ = 40) of fiproj is lower than the
dimension (% = 144) of fihist , we can improve the association
speed by using fiproj. γ is the hyper parameter for balancing
the weights of W i

new and W i. Therefore, γ is between 0 and
1. When γ = 1, W i is updated with W i

new only. In our case,
we set γ to 0.5 (refer to Sec. V-B for more details of γ ).
All the procedures of the proposed appearance learning are

summarized in Algorithm1.

Algorithm 1 The Proposed Discriminative Online
Appearance Learning

Input : Weight matrices
{
W i
}n
i=1 for n tracklets.

Output: Updated weight matrices
{
W i
}n
i=1

1 //Evaluating overall appearance discriminability
2 Compute 3t using Eq. (6);
3 if 3t < TR1 then
4 for i← 1 to n do
5 //Evaluating appearance discriminability of

each tracklet
6 Compute 3i

t using Eq. (7);
7 if 3i

t < TR2 then
8 // Updating oldW i

9 Generate Z it−1+1|t ;
10 LearnW i

new with Z it−1+1|t by Eq. (9);
11 UpdateW i using Eq. (10);
12 end
13 end
14 end

D. DISCUSSION OF APPEARANCE DISCRIMINABILITY
MEASURES
It is possible to skip the overall appearance discriminability
evaluation 3t in Eq. (6) and try to find an appearance model
with low discriminability via only an appearance discrim-
inability measure for each tracklet 3i

t in Eq. (7). However,
although some appearance models show low appearance dis-
criminability, association pairs can be determined well due to

other appearance models with high discriminability. There-
fore, in many cases it is unnecessary to update an appear-
ance model with low discriminability immediately if the
other appearance models still maintain high discriminability.
In order to prevent frequent appearance updates, we there-
fore exploit both measures 3t and 3i

t together. As a result,
we can boost the tracking speed by reducing the number of
appearance update. This is proven in Table 4.

V. EXPERIMENTS
A. MOT SYSTEM IMPLEMENTATION
1) DATASET
To evaluate our method, we use the 2016 and 2017 multiple
object tracking (MOT16/17) challenge benchmark sets [35]
for pedestrian tracking. The MOT16 dataset includes 7 train-
ing and 7 test sequences captured from moving or static
cameras with different frame rates. The MOT17 dataset also
includes 7 training and 7 test sequences, and 3 detection sets
by applying DPM [36], Faster-RCNN [37], and SDP [38]
are provided per sequence. Therefore, 21 different training
and 21 different test sets are provided in the MOT17 dataset,
respectively. Also, the crowded density of objects is different
each other. For a fair comparison, we use only detections and
ground truth provided in the MOT16/17 challenges.

2) EVALUATION METRICS
We use common metrics which are also used in the MOT
benchmark challenge: the multiple object tracking accu-
racy (MOTA↑), multiple object tracking precision (MOTP↑),
the ratio of mostly tracked trajectories (MT↑), the ratio
mostly lost trajectories (ML↓), the number of track fragment
(FG↓), false alarms per frame (FAF↓), the number of false
positives (FP↓), the number of false negative (FN↓), the num-
ber of identity switches (IDS↓) and tracker speed in frames
per second (Hz↑). Here, ↑ and ↓ represent that higher and
lower scores are better results, respectively.

B. PERFORMANCE EVALUATION
1) SYSTEM PARAMETERS
We have tuned all parameters from experiments and
unchanged them for all the evaluation. As shown in Fig. 1, our
framework consists of confidence-based multi-object track-
ing (Fig. 1. (1)-(2)) and discriminable online appearance
learning (Fig. 1. (3)-(5)) parts. In the first part, the most of
parameters are set to be identical with [1] except for %. % is a
dimension of histogram feature and is tuned to 144.

The appearance learning part includes the following
parameters (ψ , ρ, ζw, ζh, 1, τ , g, γ , TR1 and TR2). ψ ,
ρ, ζw, ζh are parameters to collect training samples in the
online sample mining method. The setting values of these
parameters are provided in Sec. IV-B. In fact, changing these
parameters affects the number of training samples g. There-
fore, we provide the evaluation results for the speed and
accuracy of the our tracker by changing g in Fig. 4.
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TABLE 1. Performance comparison with other MOT systems on the 2016 and 2017 MOT challenge benchmark. The results are sorted according to the
setting and MOTA score. (More results can be found in the 2016 and 2017 MOTChallenge website.)

FIGURE 3. Appearance affinity matrices using PCA and PLS. Each element
of these matrices represents an appearance affinity score between
tracklets.

In addition,1 controls the frame interval to collect training
samples. More specifically, the samples for each tracklet are
collected from t −1+ 1 to t frames. τ is the number of PLS
vectors used in Eq. (9). γ is the hyper parameter for balancing
the weights ofW i

new andW
i used in Eq. (10). TR1 and TR2 are

thresholds used for measuring appearance discriminability of
a tracklet as described in Sec. IV-A. Since these parameters
(1, τ , TR1 and TR2) could affect performance of our system,
we have investigated the sensitivity of our tracker over these
parameters in Fig. 5. In addition, we evaluate the perfor-
mance of our tracker for different γ in Table 5.

Based on the evaluation results in Fig. 4-5 and Table 5,
we determined the values of the hyper parameters which
maximize the speed and accuracy of our tracker together. As
a result, we set g,1, τ , γ , TR1 and TR2 to 24, 5, 40, 0.5, 0.25,
and 0.2.

2) MOT16/17 CHALLENGE EVALUATION
We evaluated our tracking system on the MOT Bench-
mark website [35], and compared with other state-of-the-art

tracking systems. Table 1 shows the performance of our
system on the test sets in the MOT16/17 challenges. In
Table 1, we divide tracking systems into online and batch,
and appearancemodels into shallow and deepmodels. Table 1
shows that our system achieves the better results for sev-
eral metrics than other systems. In particular, our system
achieves the best MOTA rate among online tracking systems
using shallow appearance models on MOT17. In MOT16,
our system is superior to other online systems using shallow
models. Only two online tracking systems using shallow
models [39], [40] show the higher MOT scores than ours, but
our system is much faster than [39], [40]. In addition, our
system shows the comparable performance with the recent
tracking systems [1], [11], [26], [48] using deep learning.
These results indicate that the proposed appearance learn-
ing can build trajectories under occlusions by discriminating
object appearances accurately.

3) COMPARISON OF APPEARANCE MODELS
To evaluate our appearance learning method, we have imple-
mented several MOT systems with different appearance
models:

(a1) Object-specific appearance models using PLS
(a2) A global appearance model using PLS
(a3) Object-specific appearance models using color his-

togram
(a4) Object-specific appearance models using PCA
Here, all the systems (a1-a4) use our sample mining and

appearance discriminability measures in common, but use
different features. (a1) and (a2) use the learned features using
PLS. In (a1), we generate a PLSmatrixW i per object and pro-
duce a PLS feature fiproj by projecting a histogram feature fihist
on W i (i.e. fiproj = W ifihist ). However, in (a2), we generate a
common PLS matrixW global with object labels, and generate
fiproj by projecting fihist on W

global (i.e. fiproj = W globalfihist ).
(a3) uses a color histogram feature fihist for each object.
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FIGURE 4. Speed and accuracy by using different g on the MOT16-09 sequence. Marker colors are changed according to g. g is selected by online sample
mining (IV-B).

TABLE 2. Performance comparison with difference appearance (App.) models.

FIGURE 5. Sensitivity analysis for appearance learning parameters on MOT16 training set. (a)-(d) show the MOTA rates of our system when 1, τ ,
TR1 and TR2 change. In each evaluation, other parameter values are fixed.

In (a4), we generate a PCAmatrix for each object and project
fihist on each PCA matrix.
In Table 2, we evaluate (a1)-(a4) for several metrics on a

MOT16 training set. As shown, we obtain the best results
for the most metrics when using (a1). When comparing
(a1) and (a2), (a1) greatly reduces FP. This means that
the object-specific appearance model is more accurate to

discriminate each object with background. We also know
that the features learned by PLS (a1) and (a2) have more
discriminability power than the color histogram feature (a3)
and the feature learned by PCA (a4).

For more comparison between PLS and PCA, we com-
pare appearance affinity matrices between different tracklets
by using PLS and PCA in Fig. 3. As shown, the matrix
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TABLE 3. The speed (Hz) of our system is computed on the MOT16/17 training sets. The average speed (Avg.) in each set is calculated by dividing the total
running time into the total number of frames for whole sequences. Here, DPM, FRCNN and SDP represent detection sets obtained from different detectors
as described in Sec. V-A.

learned by PLS produces more discriminative affinity scores;
lower scores for the pairs of different objects, but higher
scores for the pairs of the same objects. Since the appear-
ance affinity matrix is used for the association and appear-
ance discriminability measures, our appearance model using
PLS can improve the overall tracking performance as shown
in Table 2.

4) SPEED AND ACCURACY
We analyze the speed and accuracy of our tracking sys-
tem with the proposed appearance learning. As mentioned,
the performance is affected by the number of training samples
(g = g++g−) used for learning a PLS weight matrix Eq. (9).
To find out the relationship between them, we evaluate our
system by changing g on the MOT16-09 sequence. For eval-
uating the accuracy, we use the MOTA metric which shows
overall tracking performance. As shown in Fig. 4, using more
training samples can improve the accuracy but reduce the
speed. When using g = 24 with g+ = 8 and g− = 16,
we achieve the best result (sweet spot) to trade-off the speed
and accuracy. Here, the sweet spot point g maximizes the
summation for the weighted MOTA and Hz scores. We set
the weights to 0.7 and 0.3 to increase the tracking accuracy
more. Therefore, for all the experiment, we set g to 24.
In addition, Table 3 provides the details for the speed

of our system on the MOT16/17 training set. In average,
it performs in 8.38 Hz and 7.53 Hz on theMOT16/17 training
sets, respectively. The tracking speed is different according
to the object crowded density in a sequence. In particular,
ours shows the real-time speed (26.98 Hz) in the less crowded
scene (MOT16-05).

For the more comparison, we compare the speed of
our system with other systems on the MOT16/17 test sets.
As shown in Table 1, our system has the competitive
speed compared to other systems. On the MOT16 challenge,
our system is faster than other state-of-the-art track-
ing systems [1], [11], [26], [39], [40]. On the MOT17 chal-
lenge, our system is also faster than [3], [5], [41], [49]–[51].

We emphasize that our system achieves the average
speed of the 5.8 Hz and 5.7 Hz without using GPU
(e.g.MOTDT17 [48] ) and parallel programming. Therefore,
there is a still room to improve the speed by applying the
techniques.

5) SENSITIVITY ANALYSIS
We also analyze the sensitivity of our system over 1, τ ,
TR1 and TR2. In order to evaluate sensitivity, we extensively
evaluate the overall multi-object tracking accuracy (MOTA)
of our system by changing the values of those parameters on
the MOT16 training set consisting of 7 sequences. Figure 5
shows the sensitivity evaluation results. As shown, theMOTA
scores of our system are not changed much according to
the parameter values. This indicates that our system is not
sensitive to the hyper parameters. From the experimental
results, we set 1 and τ to 5 and 40 in consideration of
tracking accuracy and speed together. In addition, we tune
TR1 and TR2 to be 0.25 and 0.2, respectively. Although these
parameter values could not provide the best MOTA scores
shown in Fig. 5(c)-5(d), we set the values to boost the tracking
speed. As a result, compared to the speed of our system using
TR1 = 1 and TR2 = 1, the speed increases approximately
7.3 times.

6) EVALUATION OF APPEARANCE
DISCRIMINABILITY MEASURES
To evaluate the effectiveness of the proposed appearance
discriminability measures 3t and 3i

t in Eq. (6) and Eq. (7),
we compare tracking performance by applying the measures
3t and 3i

t in a different way. We implement the following
systems:

(b1) system with all 3t and 3i
t

(b2) system without 3t
(b3) system without 3t and 3i

t
From the evaluation results of (b1)-(b3) shown

in Table 4, we can see the effect of the proposed appear-
ance discriminability measures. When comparing the system
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FIGURE 6. (a) A tracklet and detections are marked with red and green boxes, respectively. (b)-(d) Appearance affinity scores between a tracklet
and other detections are computed by using the PLS, PCA, color histogram, respectively.

FIGURE 7. Tracking results by using our discriminative appearance learning method under occlusions. Each column shows a tracked object
before/during/after the occlusion, respectively. On the sequence (MOT16-02) captured in a static camera, we also depict the trajectory of
the tracked object. (a) MOT16-02 frame 452. (b) MOT16-02 frame 457. (c) MOT16-02 frame 464. (d) MOT16-05 frame 254. (e)
MOT16-05 frame 259. (f) MOT16-05 frame 266. (g) MOT16-11 frame 756. (h) MOT16-11 frame 769. (i)MOT16-11 frame 782.

(b1) and (b2), exploiting the overall appearance discrim-
inability 3t allows us to improve the speed by reducing the
number (#) of appearance model update. Compared to (b3),
which updates all appearance models per frame, (b1) is faster

about 7.3 times. In terms of the accuracy, (b3) shows the
slightly higher MOTA due to the lower FP score than (b1).
However, when considering the accuracy and speed together,
we confirm that using the both 3t and 3i

t is more effective.
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FIGURE 8. (a)-(n) Tracking results using the proposed appearance model on the 2016 MOTChallenge dataset.

TABLE 4. Evaluation of the proposed appearance discriminability measures 3t and 3i
t .

7) ONLINE LEARNING EVALUATION
We evaluate the effect of our online appearance learning by
changing the hyper parameter γ used for balancing old and
new weight matrices in Eq. (10):

(c1) UpdatingW i with old and new models (γ = 0.5)
(c2) FixingW i with the learned model initially (γ = 0)
(c3) UpdatingW i with a new model only (γ = 1)

In Table 5, the comparison results of (c1)-(c3) are shown.
The proposed (c1) achieves the best MOTA, MT, FN,
IDS, and FG scores. In particular, (c1) greatly reduces the
IDS and FG. When comparing (c2) and (c3), both methods
show almost similar performance for the most metrics. These
results verify the effect of our online learning which updates
appearance models with old and new models.
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TABLE 5. Performance evaluation of the proposed online appearance learning by changing the hyper parameter γ .

8) QUALITATIVE EVALUATION
Figure 6 shows appearance affinity scores between a track-
let and detections, and the scores are computed by learned
appearance models with the PLS, PCA, and color histogram.
In Fig. 6(a), we mark a tracklet and detections with red
and green bounding boxes, respectively. In Fig. 6(b)- 6(d),
we represent the affinity scores of detections with colored
boxes. As shown, appearance models learned by a PLS
weight matrix produce more discriminative scores (i.e. lower
association scores) for detections from other objects than
those learned by PCA and color histogram. In particular,
the color histogram generates high association scores even for
many other detections as shown in Fig. 6(d).When comparing
PLS and PCA, PLS can still produce a lower association score
for the detection (the arrow with red color) which is difficult
to distinguish due to the similar clothes.

Figure 7 shows the tracking results of the proposed method
under severe occlusions. Even though the objects are fully
occluded by other objects as in Fig. 7(b), 7(e), and 7(h),
we can correctly maintain their IDs using our discriminative
appearance models after occlusions.

Figure 8 shows the tracking results using the proposed
appearance model on the 2016 MOTChallenge dataset. Our
system robustly tracks the most objects even though the
objects are frequently occluded and their appearance and
motion are changed with time.

VI. CONCLUSION
In this paper, we have proposed a discriminative online
appearance learning for multi-object tracking. We present
online sample mining and online appearance learning meth-
ods to learn and update appearance models of tracked
objects with incoming tracking results. To alleviate compu-
tational complexity of learning appearance models, we pro-
pose appearance discriminability measures to evaluate the
appearance discriminability between all tracklets and for each
tracklet. We then determine and update appearance models
with low discriminability only.

We have verified the effectiveness of the proposed meth-
ods from extensive evaluation. In addition, our method
achieves the improved performance over state-of-the-art
tracking methods on the MOT16/17 benchmark challenges.
Although we combine our appearance learning method
with the confidence-based data association method in this
paper, we believe that the proposed appearance learning
method can be compatible for other online and batch
tracking methods since it does not depend on association
methods.
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