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Joint Initialization and Tracking of Multiple Moving
Objects Using Doppler Information

Ju Hong Yoon, Du Yong Kim, Seung Hwan Bae, and Vladimir Shin

Abstract—In this correspondence, a new multi-target tracking (MTT)
algorithm based on the probability hypothesis density (PHD) filtering
framework is designed in order to improve tracking performance via
the proposal of two contributions. First, unlike typical existing systems,
Doppler information is additionally employed to enhance the clutter
rejection capability. Specifically, position and Doppler measurements
are iteratively incorporated in a two-step process based on a Gaussian
mixture PHD (GMPHD) filter. Second, a concrete initialization process is
proposed in the birth intensity design of the GMPHD. The initialization
process from consecutive measurements leads to a reliable birth intensity
that improves track management performance. Both contributions are
subsequently evaluated through MTT simulations, the results of which
verify that the proposed algorithm is viable.

Index Terms—Bayesian filtering, Doppler information, initialization,
multi-target tracking, PHD filter.

I. INTRODUCTION

A reliable multi-target tracking (MTT) filter requires a sufficient re-
duction of measurement uncertainties and efficient track management.
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Measurements obtained from radar, sonar, or laser sensors contain un-
certainties; such as random measurement error, spurious returns from
clutter, detection loss, etc. Based on these measurements, the purpose
of the MTT filter is to estimate a set of multiple target states. Simul-
taneously, the number of targets should be known in order to ensure
efficient track management and to resolve the appearance and disap-
pearance of targets [1]–[3].

In literature, the two challenges of MTT mentioned above are
usually discussed by attempting to develop data association algo-
rithms that correctly assign target-oriented measurements and exclude
clutter-oriented measurements. Among them, common algorithms
include multiple hypotheses tracking (MHT), probabilistic data
association (PDA), joint probabilistic data association (JPDA) and
their extended versions with additional track management [2]–[7].
However, existing algorithms require that independent blocks (single
tracker, data association and track management) be combined in order
to implement the MTT filter. This approach can significantly increase
the computational load of the filter especially when the number of
targets increases as time evolves [3], [8].

Recently, as an alternative approach, a probability hypothesis den-
sity (PHD) filter has been proposed which avoids the data associa-
tion between measurements and includes clutter rejection in a unified
framework via finite set statistics and Bayesian analysis [3], [8]. There
have been two main implementations of the PHD: the first is based on
using the sequential Monte Carlo method (i.e., SMCPHD) and the other
uses a Gaussian mixture representation (GMPHD). Note that GMPHD
is a unique closed form implementation of a PHD filter. And it is com-
putationally efficient compared to the SMCPHD in linear dynamic sys-
tems because only dominant Gaussian components are needed to be
preserved [9]–[11].

In the MTT problem, position measurements are typically utilized
to estimate both the current position and the number of targets. To en-
hance the performance of MTT filters, information such as amplitude
information (AI) [12]–[14] and Doppler information (DI) [15]–[17] can
be further considered. In contrast to the sole use of position measure-
ments, AI or DI could improve the data association. In this work, to
improve the performance of the GMPHD filter, we focus on the usage
of DI to attain three benefits: 1) rejection of clutter-oriented measure-
ments, 2) more efficient measurement update step, and 3) provision of
initial target velocities using only a one-step measurement.

As opposed to AI, DI contains kinematic information related to the
target state because it originates from the target’s velocity, thereby it
can be effectively used to correct target states especially for the target
velocity. In addition, the initial velocity information of newly appearing
targets can be obtained from the DI that helps the track initialization.
If the DI is not provided, the initial velocity of new targets at time in-
stant � is usually assumed to be normally distributed with zero mean
and a chosen variance based on the maximum target speed. In this case,
as the variance becomes larger, inaccuracies in the initial states of the
new targets become worse. Consequently, this condition leads to a track
initialization failure in the next step. Note that though a two-step ini-
tialization (i.e., TSI also called a “two-point initiation”) may be used
as an alternative, it consumes additional computational resources [16].

In this correspondence, we present two main contributions that have
yet to be discussed in GMPHD. First, we focus on track initiation and
tracking multiple moving targets associated with GMPHD filtering via
an initialization step using consecutive measurements whereas the birth
target components designed by using arbitrary mean and covariance in
the standard GMPHD filter fail to calculate the gradient of Doppler
measurement function properly in the update step. Second, the DI is
incorporated for more precise birth target selection and improving the
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accuracy of predicted states. Considering these two contributions, we
denote our algorithm as the GMPHD with initialization and Doppler
information, i.e., GMPHD-I-DI.

The remainder of the correspondence is organized as follows.
Section II presents the problem formulation. In Section III, the
GMPHD-I-DI filter is proposed and we briefly present the GMPHD-I
filter when DI is not available. In Section IV, we introduce an efficient
track initialization algorithm based on one step initialization (OSI)
procedure using DI. In Section V, performance of the GMPHD-I-DI
filter is presented through an MTT simulation scenario and a com-
parison with other filters in terms of estimation accuracy of multiple
target positions and number of targets is given.

II. PROBLEM FORMULATION

We present a dynamic system model of multiple moving targets
based on random finite set (RFS) formulation and a measurement
system model containing the angle, range and DI from targets, clutter
and false alarms.

Each target state at time � is denoted as �
���
� �

� �
���
���� ��

���
���� �

���
���� ��

���
��� �

�
� � � �� � � � � �� , where �

���
���

and �
���
��� are � and � coordinate positions, respectively, ��

���
��� and

��
���
��� are the corresponding velocities, �� is the number of targets

and is time-varying because existing targets may disappear or
continue to survive and new targets may appear at any time. As such,
the multiple target states at time � � � are expressed by the RFS

���� � �
���
���� � � � � �

�� �
��� . Here, the cardinality of RFS ����

changes according to the survival probability ���� ������ and the
death probability �� ���� ������ of each target ���� � ���� in the
next time step �. In this case, the time evolution of the RFS ����

can be modeled as [9], [10]

�� �
	 ��

	����� ���� � 	� (1)

where
	 ��

	����� ���� is the survival target RFS at time � based

on RFS ���� at the previous time and 	� represents birth target RFS.
Trajectories of all surviving and birth targets are assumed to follow a
discrete-time linear dynamic model:

�� � 
���� 
 ����� �� � �� (2)

where 
 is the transition matrix and �� � �� � � ���� �� ��� is
white Gaussian noise with covariance �� and 
 ���

�

 � �� � �� �

[19].
We assume that measurements of surviving and birth targets are ob-

tained at time �, with the probability of detection being �� � �. Mea-
surements include the angle, range and DI for each target. Such mea-
surements consist of the RFS of the detected target-oriented measure-
ments 
� ���� � �� � �� and the RFS of clutter-oriented measure-
ments �� . Thus, all available measurements can be expressed by the
RFS �� � �

���
� � � � � � �

�
 �
� [9], [10]:

�� �
	��


� ���� ���� (3)

We assume that the sensor is stationary and located at (0, 0) in
the Cartesian plane and then, each target-oriented measurement
�� � 
����� can be obtained by

�� � � ���� ���� ���� �
� � �� ���� 
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� ���� (4)
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where �� , �� and �� are the range, angle and DI, respectively and �� �
�� � � ���� �� ��� is white Gaussian noise with covariance �� �
���� � ��� ��� ��� � and 
 ���

�

 � �� � �� �. We assume that ��

and �� are uncorrelated.

III. GMPHD-I-DI FILTER

The GMPHD-I-DI filter is based on a GMPHD filter; i.e., the
theoretical basis of both filters is identical. Adopting the GM form,
the GMPHD approximates the full posterior density (as in an optimal
Bayesian filter) to significantly reduce the computational complexity
for online processing [3], [10].

Following the GM approximation, a posterior intensity at time ���
takes the form:
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where  ��� is the number of Gaussian components, i.e., mean �
�
�
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and covariance� �
�
���. Then, the prediction value of ���� ��� represents

the sum of the two prediction intensities
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where �������� ��� is the predicted intensity of the surviving target,
!� ��� is the birth target intensity and  ����� �  ��� 
  ��� is
the predicted number of GMs, which includes surviving and birth
target intensities. The predicted components �

�
�
������� � �

�
�
�������

of the surviving target are obtained via Kalman filter (KF) predic-
tion, i.e., ‘KF_P’. Unlike typical PHD implementations, however,
we incorporate an initialization step into the birth target intensity
by applying the KF prediction to the initial birth target components
�

�
�
������ �

�
�
����� obtained by OSI, TSI [16]–[18], or the algorithm

specified in Section IV when the DI is available. The standard GMPHD
has the birth target intensity with user-defined components (arbitrary
means and covariances), with which we cannot compute the gradient
of the Doppler measurement function properly. On the contrary,
our method utilizes the components obtained from the initialization
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method followed by the KF prediction. Therefore, the proposed
method suggests adaptive and automatic birth intensity of GMPHD.

In this correspondence, to update multiple target states using the
polar coordinate measurements with the standard KF, we convert
polar coordinate to Cartesian coordinate measurements via the re-
lations ���� � ���� ���� ��� ������ and ���� � ���� ���� ��� ������

using a bias compensation factor �� � 	
�
�

�
[20]. The set

of converted measurements ���� and their corresponding Doppler
measurements, �� , is then denoted as RFS ���� � �����
��� �

�
���
���� � � � � �

�	 �
��� , where �� is the number of measurements and
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��� � � �
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��� �

�
�
��� �� � � � �� � � � ��� .

Hence, the updated posterior intensity 	� �
� is given by

	� �
� � ��� �
� 	����� �
�

�
� ��

�

���

�
���
� ����
 

�

���
��� ���� � �

���
��� ���� � (10)

To effectively associate DI in GMPHD, we propose a three-step
procedure. In the first step, we update the predicted components
�

���
������ �

���
����� with the KF using the converted position mea-

surement, �� � ���� to obtain the tentative tracks. After that, we
update target states using the corresponding DI �� � �� , in the
second step with the extended KF. The advantage of this consideration
is that it can calculate the gradient of the Doppler measurement func-
tion (15) more accurately because we create the tentative tracks from
the position update followed by the corresponding DI update; it gives
us more efficient results than updating using augmented measurement
approach [15] in performance. When the augmented measurements
are used, the gradient of Doppler function is computed using each
erroneous predicted target state. However, in our method, the errors
of target states are reduced by updating position measurements and
then the corrected target states are used to calculate the gradient of
the Doppler function. Moreover, the errors in birth target components
from the initialization step also can be efficiently lessened by the
position measurement update. The similar idea is recently introduced
in [17] but it is limited to the single target tracking framework. In this
correspondence, this idea is extended to the GMPHD framework as
we propose from Step 1 to 3. The one iteration of Step 1 to 3 is done
for each measurement, ��
�

��� � � � �� � � � ��� .
Step 1: Updating target states using converted position measure-

ments �� � � �
�
�
� �

�
�
� �� .

For this purpose, we use the Kalman filter update denoted
as “KF_U”, such that
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where � �
�

�

�

�

�
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�

�
is the measurement matrix

for converted measurements and �� ���� is the converted
measurement error covariance obtained by using corre-
sponding polar measurements and their covariances, ���
and ��� , based on [20, eq. (7a–7c)].

Step 2: Updating target states using DI �� � �
�
�
� .

The obtained components �
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updated using DI, such that
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Step 3: Updating weights using measurement
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Updated intensity weights ����
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where �
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���
��� ���� � ��� represent the position and Doppler

likelihood functions, respectively. In (16), the Doppler clutter
intensity is � ���� � 
 ��
 �� �

�
� for stationary clutter or we can

select � ���� � �
��

by assuming the clutter speed is uniformly
distributed within the interval ��	�	
	�	
�, where 	�	
 is the
maximum speed that the sensor can detect. Here, the spatial clutter
intensity �� ���� � 


�
is approximately selected by considering

the volume of the sensor detection range � and the average number
of clutter �� at each time (scan).

Remark 1: If the DI is not available, the update stage only in-
cludes Step 1 and 3. In this case, the updated Gaussian components
�

���
��� ���� � �

���
��� ���� are obtained by �

���
��� ���� � �

���
��� ����

and �
���
��� ���� � �

���
��� ���� and, in Step 3, ����� ���� � � and

� ���� � �. We refer to this filter as the GMPHD-I filter, i.e., a
combination of GMPHD and OSI (or TSI) without DI.

Remark 2: In GMPHD, the number of GM components increases
exponentially as time evolves. For this problem, the removal and
merging steps have been suggested in [10], [22]. To obtain the efficient
GM representation of the posterior intensity 	� �
�, we apply the
method based on the mixture weights ����

� ���� as given in [10]. The
parameters used in the removal and merging step and the multiple target
state extraction are the same as in [10]. We denote ��� as the set of
extracted target states at time �, i.e., ��� � ��

���
��� � � � �� � � � �  ����

where  ��� is the number of extracted targets.

IV. ONE STEP INITIALIZATION FOR GMPHD FILTER USING DI

In this section, we propose adaptive birth target intensity by using
the OSI method to select the intensity components. Before initializing
the birth target components, we remove measurements located near the
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current multi-target states ��� because measurements near ��� are not
likely being obtained from the birth targets.

Part 1. Removing measurements near current multi-target states ���:

Given ��� , ���� , �� ,

�
�����
� � � ��
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�����
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for � � �� � � � � 	���; for 
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if ������
� �
� ���� ��������

���
���� ���� ��������

���
� � (18)

end; end

Threshold 
 , i.e., a distance value, is selected according to the range
standard deviation�� because if the measurement is target-oriented, the
measurement may be located within the range standard deviation with
high probability. Cardinalities of ���� and ���� are equal to 		�� which
is the number of birth target components. Components of birth targets
are obtained in Part 2. When DI is not available, Part 2 is replaced by
OSI or TSI [17], [18].

Part 2 : Initializing birth target components: Based on ���� �
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the DI.
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where the corrected converted measurement error covariance ����
��� ob-

tained based on �
���
��� , ������� , ��� and ��� using [20, eq. (7a-7c)]. The prior

speed error covariance ��
 is given.

V. SIMULATION

To verify the accuracy performance of the GMPHD-I-DI filter, we
compare it with GMPHD-I filters (i.e., GMPHD-OSI and GMPHD-
TSI) through an MTT simulation scenario. We used a performance
evaluation metric called the optimal subpattern assignment (OSPA)
distance, which is specialized for the MTT filter accuracy test [21].
Since the OSPA distance calculates the localization and cardinality dis-
tance of MTT filters, the filter performance can be analyzed based on
two physical aspects [21]; we selected OSPA parameters, � � � and
� � 50 m.

For this task, we consider a simulation scenario having five targets.
Target 1, 2, and 3 appear at � � �, � � � and � � � and disappear
at � � ��, � � �� and � � ��, respectively; target 4 and 5 appear
at � � �� and � � ��, respectively and continue to exist during the
whole simulation. The initial states, appearance and disappearance of

TABLE I
DESCRIPTION OF INITIAL TARGET STATES

Fig. 1. Trajectories of true targets and clutters (black).

each target are described in Table I. The detection range is set by the
angle range ��� ��� and the distance range ���������. True trajec-
tories are made by GMTI model [16], [19], as depicted in Fig. 1. For
filter model parameters, the GMTI transition matrix � and the mod-
eling error covariance � are given by

� ����� ���� ��� � �� �
� �

� �

and

� ����� ������� � �� � �
�
�

�

�
�

�
�

�
�

where �� � ��� and the sampling time � � �. In addition, the mea-
surement error standard deviations are �� � ��, �� � �� � and
�� � ��� �

�
and the probability of target detection and target survival

are �� � ��� and �� � ���� respectively. Clutters are assumed to
be uniformly distributed in the detection region. The clutter intensity
in polar coordinates is � ���� � �

�
� �	

�����			�

������. Because

polar measurements are translated to Cartesian coordinates in the fil-
ters, the clutter intensity is also approximately translated to Cartesian
coordinates. Thus, the translated clutter intensity is � ���� � �

�
�

�	

����		 �
� ���� � ����, where the volume � is circle area. The

maximum target speed is  ��
 � ��; so the Doppler clutter intensity
is � ���� � �

�	
. Parameters for initialization step are a distance value


 � �� , initial birth target weight !���
	���� � ���� and a prior speed

standard deviation �
 � �� �
�

.
We run 1000 Monte Carlo trials for each filter to obtain the OSPA

distance. Figs. 2–4 present a performance comparison of the three fil-
ters: 1) GMPHD-OSI: a combination of GMPHD and OSI without DI;
2) GMPHD-TSI: a combination of GMPHD and TSI without DI; and
3) GMPHD-I-DI: a combination of GMPHD-DI and OSI with DI. The
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Fig. 2. OSPA distance comparison. First period: Appearance of five targets.
Second period: Consistent number of targets. Third period: Disappearance of
three targets.

Fig. 3. Cardinality distance comparison. First period: Appearance of five tar-
gets. Second period: Consistent number of targets. Third period: Disappearance
of three targets.

Fig. 4. Localization distance comparison. First period: appearance of five tar-
gets. Second period: consistent number of targets. Third period: Disappearance
of three targets.

simulation results are analyzed over three periods: 1st period: appear-
ance of new targets, � � ��� ���; 2nd period: number of targets is con-
sistent, � � ���� ���; and 3rd period: disappearance of existing targets,
� � ���� �	�. As can be seen in Fig. 2, the OSPA distance is negligibly
small at � � �	� �� because at the beginning of operation the sets of true
�� and estimated 
�� multi-target states are empty (i.e., targets do not
appear and disappear).

A. Simulation Comments for First Period

We see that the cardinality distance for three filters is more dominant
than the localization distance because these filters take a few time steps
to confirm the appearance of new targets in Figs. 3 and 4. As shown
in Fig. 3, the cardinality difference in first period between the set of
estimated target states and the set of reference target states is larger
than the other periods and the spikes represent the appearance of new
targets. The cardinality distance of the GMPHD-I-DI filter decreases
faster than other filters because DI provides more accurate information
for birth targets in the initialization step.

B. Simulation Comments for Second Period

In the second period, the cardinality distance is almost constant and
similar for all filters because there is no target appearance and disap-
pearance. For this reason, the comparison of the localization distance of
the three filters are distinctive as given in Fig. 4 from � � �� to � � ��.
The localization distance comparison shows that GMPHD-I-DI also
performs best in accuracy.

C. Simulation Comments for 3rd Period

After � � ��, even though targets disappear, the accuracy perfor-
mance of GMPHD-I-DI remains the best. The OSPA distances for three
filters are seen to slightly increase because targets sequentially disap-
pear at � � 65, 68, 71. Each time step a target disappears, the cardi-
nality distances fluctuate a little; whereas the localization distance in-
creases. This is because sometimes there are losses of tracks and OSPA
metric automatically replaces those failures as the cut-off value, � � �	
which is relatively larger than the error computed from the true tracks.
This track loss happens for all sequences and this loss significantly af-
fects the localization distance when the number of targets decreases.

Remark 3: We also simulated and compared our method with the
standard GMPHD update based on augmented measurements. From
the result we confirmed that our method is slightly better than the stan-
dard GMPHD as described in Section III.

VI. CONCLUSION

In this correspondence, we associated the initialization step with
GMPHD to jointly initialize and track multiple moving objects. In ad-
dition, we incorporated DI into GMPHD in order to accurately select
the components of birth target intensities and correct predicted target
intensities. We proposed to incorporate the DI into GMPHD using a
three-step procedure, including a target state correction based on posi-
tion measurements ���� � ���� and DI �� � 	� and update of the
corresponding weights 
���

� �����
 by ���� . Furthermore, we added a
preliminary process before the initialization methods (e.g., OSI, TSI) in
GMPHD to achieve more efficient track initiation. Through a series of
Monte Carlo simulations, we found that the DI significantly enhanced
the filter performance in terms of its ability to estimate the states and
the number of targets. For the intuitive extension of our work, our pro-
posed method also can be applied to the Cardinalized PHD filter [23],
[24] and similar performance improvements are expected.
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A Metric for Performance Evaluation of Multi-Target
Tracking Algorithms

Branko Ristic, Ba-Ngu Vo, Daniel Clark, and Ba-Tuong Vo

Abstract—Performance evaluation of multi-target tracking algorithms
is of great practical importance in the design, parameter optimization and
comparison of tracking systems. The goal of performance evaluation is to
measure the distance between two sets of tracks: the ground truth tracks
and the set of estimated tracks. This paper proposes a mathematically
rigorous metric for this purpose. The basis of the proposed distance
measure is the recently formulated consistent metric for performance eval-
uation of multi-target filters, referred to as the OSPA metric. Multi-target
filters sequentially estimate the number of targets and their position in
the state space. The OSPA metric is therefore defined on the space of
finite sets of vectors. The distinction between filtering and tracking is
that tracking algorithms output tracks and a track represents a labeled
temporal sequence of state estimates, associated with the same target. The
metric proposed in this paper is therefore defined on the space of finite
sets of tracks and incorporates the labeling error. Numerical examples
demonstrate that the proposed metric behaves in a manner consistent with
our expectations.

Index Terms—Estimation, performance evaluation, tracking.

I. INTRODUCTION

Multi-target tracking refers to the sequential estimation of the
number of targets and their states (positions, velocities, etc.) tagged
by a unique label. Hence, the output of a tracking algorithm are
tracks, where a track represents a labeled temporal sequence of state
estimates, associated with the same target.

In evaluating the performance of a multi-target tracking algorithm
the goal is to measure the distance between two sets of tracks: the
set of ground truth tracks and the set of estimated tracks, produced
by the tracking algorithm under evaluation. Performance evaluation of
multi-target tracking algorithms is of great practical importance, with
applications in tracking system design, parameter tuning and tracker
comparisons (e.g., in tender evaluations). Consequently, the topic has
been studied extensively; see, for example, [1], [2], [3, Ch. 13], [4],
and [5].

The general performance evaluation methodology includes three
steps: 1) the creation of a scenario of a certain level of difficulty;
2) running of the multi-target tracking algorithm under assessment;
and 3) assignment of a performance measure (score) as a measure of
the distance between the ground truth and the tracker output. In order
to estimate the expected performance, the score is typically averaged
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