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Abstract: In this study, the authors consider a multi-target tracking (MTT) problem in a cluttered environment. Due to the
difficulty of the problem, the methods relying only on spatial information such as range, bearing and Doppler velocity can be
unreliable. To overcome this, they additionally exploit the amplitude information, commonly provided by radar and sonar, for
MTT. However, the usage of amplitude information is not straightforward because the signal-to-noise ratio (SNR) should be
known in advance or estimated at the same time. To this end, they first propose a novel SNR estimation algorithm based on a
maximum a posteriori approach, which helps the tracker to exploit the amplitude information effectively. Based on the estimated
SNR, they then propose a complete framework for MTT, which is mainly composed of data association and track state update
parts. They extensively evaluate the proposed system in a series of challenging scenarios, and the experimental results verify
the effectiveness and robustness of the authors’ methods.

1 Introduction
Automated multi-target tracking (MTT) has been applied to various
applications such as radar-based tracking [1, 2] and visual object
tracking [3, 4]. In general, this problem is formulated to find states
of multiple targets using a set of sensor measurements. In most
cases, the measurement origin is also unknown since a sensor
usually receives mixed signals reflected from both targets and
random clutter. Thus, to successfully solve the MTT problem, a
data association process is required, which would be able to
correctly associate measurements with the corresponding tracks.

This task can be simply performed using greedy algorithms
such as the nearest neighbourhood [5] or the strongest neighbour
[6] data association. However, they do not properly consider the
case in which measurements of multiple targets are scattered. To
find optimal solution for the joint track-to-measurement
assignment through single-frame and multi-frame searches, joint
probabilistic data association [5] and multiple hypothesis tracking
(MHT) [7] have been proposed. However, they incur large
computational costs as the number of possible joint assignments
combinatorically increases due to the number of tracks and
measurements. Recently, in an attempt to alleviate this complexity,
linear multi-target integrated probabilistic data association
(LMIPDA) [8] has been developed. However, incorrect association
is often made when targets are closely spaced or clutter is densely
distributed in the target vicinity. In these situations, exploiting only
spatial information [5, 7–9] is not sufficient for discriminating
between target and clutter measurements.

Since practical sensors such as a radar and a sonar provide
amplitude information as well as spatial properties, the amplitude
can be utilised as an additional feature. However, using amplitude
in filtering to estimate the states of targets might also be
challenging because of the difficulty of designing an explicit model
that describes the direct relationship between target states, e.g.
positions and velocities, and amplitude measurement. Therefore,
instead of directly exploiting amplitude for state estimation, it is
more common to utilise it in the data association process, based on
the practical assumption that the signal amplitude returned from a
target is stronger than that returned from clutter [2, 10–13].

Based on this finding, data association methods using the
amplitude information have been proposed for more accurate
association. An extension [12] of probabilistic data association and
the highest probabilistic data association [10] have been developed
for single object tracking in a cluttered environment. In addition,
amplitude has been incorporated into MHT [13] and Viterbi data
association [11]. Recently, for tracking multiple targets with
different signal-to-noise ratios (SNRs), the amplitude was also
incorporated into a framework of finite set statistics [2]. In a
similar manner, we make use of the amplitude feature to enhance
description ability when associating between tracks and
measurements.

As a common way of utilising the amplitude for the association,
the amplitude likelihood function of a target is calculated based on
the probability density function of the amplitude [2, 6, 11–13]. In
general, the density is modelled by the Rayleigh distribution [2, 12]
with respect to the SNR and received amplitude based on the
assumption that a received signal is Rayleigh faded. This model is
appropriate for scan-to-scan slow fluctuation (Swerling I) and
pulse-to-pulse fast fluctuation (Swerling II) [14, 15], which are
mostly used when changes in target orientation lead to large SNR
changes.

In most previous works [6, 11–13], for evaluating the amplitude
likelihood function, it is assumed that target SNRs are known and
fixed during tracking. However, the SNR information may not be
available in many practical applications. Even though knowledge
of the (initial) SNR is provided, the SNR should be updated due to
its fluctuation caused by the following reasons: (i) the received
signal of the target is faded by propagation and attenuation through
a medium [12]; (ii) the returns of most targets are composed of the
sum of reflected rays from individual scattering points [2, 16]; and
(iii) the aspect angle of the target is changed by the target motion
[14]. To resolve the limitations of using the amplitude feature, we
propose a novel SNR estimation method based on a maximum a
posteriori (MAP) inference.

If the target SNRs are estimated, we can then employ amplitude
in conjunction with the spatial feature for MTT. In this study, we
designed a complete MTT system that uses both kinematic and non-
kinematic features effectively, which consists of data association
and track state update parts. In particular, we extend the two-step
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recursive procedure (i.e. prediction and update) of conventional
particle filtering [17] to a three-step procedure including a
measurement selection step, which allocates one of the
measurements to each sample using the (posterior) association
probability evaluated by the association part. As a result, we can
improve the robustness of the filtering part by updating the sample
weights with associated measurements while reducing its
complexity.

To evaluate the SNR estimation method, we constructed a
practical experimental setup and extensively evaluated its
performance. Furthermore, to prove the effectiveness and
robustness of our MTT system, we implemented several MTT
systems using different association methods, and compared their
performance for three MTT scenarios and a challenging benchmark
dataset.

2 Probabilistic amplitude information modelling
In this section, we first present probabilistic amplitude models for
target and false alarm (or clutter), which can be expressed with
amplitude and its SNR. As previously mentioned, in designing the
models, most of the previous methods using amplitude [6, 11–13]
assume that the SNR is known and fixed. Practically, however, it is
difficult to know the target SNR in advance since it often randomly
fluctuates according to signal fading [12], interference from other
signals [2, 16] from other targets and clutter; and the change of the
target aspect angle [14]. To overcome this limitation, we propose a
method for estimating unknown target SNRs based on MAP
inference.

2.1 Amplitude likelihood models

Let us assume that amplitude is the output of a bandpass matched
filter that has an envelope detector attached. In this case, the
probability density of the amplitude a follows a Rayleigh
distribution [For clarity, the set, matrix, vector, and scalar are
denoted by blackboard bold font, upper boldface, boldface, and
standard italic types, e.g 𝔸, A, a, a.], as described in [12, 16]. The
amplitude probability density of false detections (or clutter) can be
expressed as

pc(a) = a
σ2 ⋅ exp −a2

2σ2 , a ≥ 0, (1)

where σ2 is the variance (or power) of the in-phase and quadrature
components (xs, ys) [12] of the narrow band noise coming out of
the matched filter, where each component is assumed to be
Gaussian, but independent of each other. Here, xs, ys ∼ 𝒩(0, σ2)
and the amplitude a is defined as a = xs

2 + ys
2. Note that the

amplitude density function is the representation of the power (σ2)
of each component. However, as discussed in [18], in the narrow
band filter, the amplitude density function of the noise is modelled
with the average (or total) noise power σnoise

2  rather than the power
σ2 of the component since the receiver bandwidth-to-centre
frequency ratio is usually small. Thus, we reformulate it with
average noise power σnoise

2 , where σnoise
2 = 2σ2:

p0(a) = 2a
σnoise

2 ⋅ exp −a2

σnoise
2 , a ≥ 0, (2)

We also assume that the background noise is normalised as in [2,
12]. This means that the variance of the noise (2) is σnoise

2 = 1, and
the expected noise power N0 is unity as

N0 = E a2 = ∫
0

∞
a2p0(a) da = 1. (3)

We then define the expected (or mean) SNR [The SNR is
represented in log scale: SNR (dB) = 10log10(d).] d = S/N0, where
S is the signal power and d can be treated as the expected target

signal power because N0 = 1. In addition, we consider a slow
Rayleigh fading amplitude-modulated narrowband signal in the
presence of narrowband noise. In this case, the signal returned
from the target is expressed as the sum of the transmitted signal
and the narrow band noise. Also, as described above, the noise has
the normal distribution with zero mean and unit variance (i.e.
σnoise

2 = 1). Therefore, the amplitude density function of a target
follows Rayleigh distribution with the variance 1 + d (i.e. the
signal-plus-noise to noise ratio):

p1(a, d) = 2a
1 + d ⋅ exp −a2

1 + d . (4)

However, to evaluate the signal power S from the target amplitude
distribution (4), we need to estimate the expected target SNR d
because

S = E a2 = ∫
0

∞
a2p1(a, d) da . (5)

Let us next consider the case in which the amplitude a exceeds a
detection threshold DT, i.e. a ≥ DT. Then, the amplitude density of
the target becomes

p1
DT(a, d) = 1

PD
p1(a, d) = 2a

1 + d ⋅ exp DT2 − a2

1 + d , a ≥ DT, (6)

where the target detection probability PD used for normalisation is
calculated as

PD = ∫
DT

∞
p1(a, d) da = exp −DT2

(1 + d) . (7)

Otherwise the amplitude probability density of false alarms is
expressed from (2)

p0
DT(a) = 1

PFA
p0(a) = 2a ⋅ exp DT2 − a2 , a ≥ DT, (8)

where the clutter detection probability PFA is given as

PFA = ∫
DT

∞
p0(a) da = exp −DT2 . (9)

When the target SNR d is known, the amplitude likelihoods of both
the target and clutter can then be computed as

ga
DT(a |d) = p1

DT(a, d), (10)

ca
DT = p0

DT(a) . (11)

Once the likelihood functions ga
DT(a |d) and ca

DT are obtained, we
utilise the amplitude information to discriminate different targets
and/or clutter using the likelihoods. A tracking method using this
amplitude information will be discussed in Section 3. To exploit
the amplitude in the general case without the assumption of the
known SNR, we present a novel SNR estimation method based on
MAP inference in the following section.

2.2 MAP inference for unknown SNR estimation

2.2.1 SNR estimation: To estimate an unknown SNR, a large
number of amplitude measurements are usually required as proved
by Clark et al. [2] with Cramer-Rao lower bound. Therefore, rather
than inferring the target SNR with an instant amplitude
measurement ak

τ of target τ at scan k, we estimate it with a set of
amplitude measurements stacked during Δ scans.
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Let us denote the stacked amplitude measurements from time
k − Δ to time k as ak − Δ:k

τ . The MAP problem of finding an optimal
SNR with respect to the collection of amplitudes ak − Δ:k

τ  can be
modelled by

d
^
k
τ = arg max

d
∏

aτ ∈ ak − Δ:k
τ

p aτ, d , d ≥ 0,

= arg max
d

∏
aτ ∈ ak − Δ:k

τ
p aτ |d p(d),

= arg max
d

∑
aτ ∈ ak − Δ:k

τ
log p(aτ |d) + log p(d) ,

(12)

where the first likelihood term p(aτ |d) is given by (10). To design
the prior term p(d), we consider the following two cases:

• Case 1: no previous knowledge of the SNR is available.
• Case 2: an initial (or previously estimated) SNR is provided, but

it should be updated due to its random fluctuation.

In the first case, we consider that the SNR can be any value within
any boundary [d1, d2], and then the prior p(d) can be modelled
using the uniform distribution as follows:

p d =
1

d2 − d1
, d1 ≤ d ≤ d2,

0, otherwise .
(13)

The MAP problem (12) can be reformulated with the prior
distribution (13)

d
^
k
τ = arg max

d
∑

aτ ∈ ak − Δ:k
τ

log p(aτ |d) + log(c), c = 1
d2 − d1

,(14)

Since c is constant, the MAP problem (14) can be transformed into
the maximum likelihood (ML) estimation:

d
^
k
τ = arg max

d
∑

aτ ∈ ak − Δ:k
τ

log p(aτ |d) . (15)

In the second case, we consider that the SNR is randomly
fluctuated in the vicinity of the initial (or previously estimated)
SNR d

^
k − 1
τ

. We model the prior p(d) using the Gaussian random

walk having the mean d
^
k − 1
τ

 and variance σd
2  as follows:

p(d) = 𝒩 d; d
^
k − 1
τ , σd

2 , d
^
k
τ ≥ 0. (16)

By substituting the prior of (12) with (16), we obtain the following
objective function:

d
^
k
τ = arg max

d
∑

aτ ∈ ak − Δ:k
τ

log p(aτ |d) + log(c),

c = 𝒩 d; d
^
k − 1
τ , σd

2 .
(17)

Next, the optimisation problems (15) or (17) can be considered as
nonlinear least-squares problems; standard methods such as the
Gauss–Newton and Levenberg–Marquardt [19] can thus be applied
to solve them. In this paper, we exploit the Levenberg–Marquardt
method.

2.2.2 Discussion: In many practical scenarios, we can effectively
estimate the SNR of a target by using both ML (15) and MAP (17)
methods. Once we find the initial SNR of a target by solving (15),
we can sequentially update its SNR at each scan by solving (17)
with the previous estimates.

For (15) and (17), we can use different scan sizes Δ. When no
previous knowledge of the SNR is available in (15), we need many
amplitude measurements to estimate it. However, when the
previous SNR value is given in (17), we can find the optimal SNR
value with only few amplitudes since the optimal value is near the
previous estimate. In our experiment, we set Δ = 10 and Δ = 5
when solving (15) and (17), respectively.

Although we can solve (15) and (17) without the SNR boundary
[d1, d2], we can find a solution more efficiently by restricting the
searching space within the boundary. The SNR boundary can be
any values depending on applications and experimental
environments. In this work, we set the minimum and maximum
values to d1 = 1(0 dB) and d2 = 1000(30 dB) as in [2].

2.2.3 Evaluation: To verify the effectiveness of the proposed SNR
estimation methods, we constructed an evaluation scheme with two
different experimental scenarios as shown in Fig. 1.

• Scenario 1: There are six targets having various initial SNRs
ranging from 7 to 12 dB and their SNRs are constant during 500
scans.

• Scenario 2: There are six targets having various initial SNRs
ranging from 7 to 12 dB, but their SNRs fluctuate within the
boundary range [0 dB 18 dB] during 500 scans. At each scan,
their fluctuations are modelled by the Gaussian random walk
with variance σd

2 = 10 using (16).

When SNR is very high, the amplitude returned from the target
can also be much higher than the clutter amplitude. Therefore, in
both scenarios, we set the mean SNRs of the targets during 500
scans to be less than 16 dB since the estimation problem of the
high target SNR (i.e. more than 20 dB) is not difficult.

In addition, in the most practical cases, target and clutter
amplitude measurements exist together. The number of clutter
measurements is closely related to the detector threshold DT. As
discussed in [5], the average number of clutter measurements
E NFA  can be modelled by the function of the false alarm PFA (9)
and the number of resolution cells Nc: E NFA = PFANc.
Furthermore, we assume that the target amplitude is detected
according to the detection probability Pd (7). Note that both the
detection probabilities PFA and Pd are determined by the target
SNR d and the threshold DT. For instance, the detection probability
increases as the SNR d becomes high. Otherwise, the probability
decreases. Also, we can remove a lot of false alarms using a high
threshold DT. However, missing detection frequently occurs in
return [In our experiment, we change the detection threshold DT
from 1 to 6 dB, and set the number of resolution cells with
Nc = 400 as in [5]. As a result, ranges of Pd and E[NFA] are [0.071
0.976] and [0 82], respectively.].

Once each true target SNR dk is determined at each scan k in
both scenarios as described above, we obtain an amplitude
measurement set Ak consisting of a target and NFA clutter
amplitude measurements which are generated using Rayleigh
distributions (6) and (8), respectively. Here, we filter out the
amplitudes below a threshold DT before SNR estimation. With the
set of thresholded amplitude measurements, we estimate the target
SNR using the ML (15) and MAP (17) methods. In scenario 1, for
the SNR estimation, the amplitudes are stacked during 10 scans
(Δ = 10). On the other hand, in scenario 2, we first find the initial
SNR value with stacked amplitudes during 10 scans (Δ = 10), and
then we sequentially estimate it with stacked amplitudes during a
reduced number of scans (Δ = 5). In both estimation methods, the
likelihood term is computed using the thresholded Rayleigh
distribution (6) with the DT. Here, it is worth noting that we set the
variance σd

2 = 400 when solving (17), which is significantly
different from the true variance σd

2 = 10 used to generate the target
SNR. From this experimental setup, we demonstrate that our
method is not sensitive to the setting of the variance. For
quantitative evaluation, we calculate the normalised mean square

IET Radar Sonar Navig., 2017, Vol. 11 Iss. 3, pp. 539-549
© The Institution of Engineering and Technology 2016

541

Authorized licensed use limited to: Inha University. Downloaded on November 06,2020 at 08:24:44 UTC from IEEE Xplore.  Restrictions apply. 



errors (NMSEs) [20] between true dk and estimated d
^
k SNRs based

on 500 Monte Carlo runs.
Table 1 compared the NMSEs of the ML and MAP estimation

methods for various target SNRs and thresholds. Although the
MAP method with DT = 2 provides a better error rate in most
cases, there is only slight difference in the performance of the ML
and MAP methods. In some cases, the NMSEs of the ML method
are better than those of the MAP method due to the large difference
between the true variance σd

2 = 10 and the variance σd
2 = 400 used

for MAP estimation. 
Fig. 2 shows the SNR estimation results obtained using the

MAP method with various thresholds. For scenario 1 shown in
Figs. 2a–c, the estimates asymptotically approach the true SNRs as
the number of scans increases. Furthermore, the estimates very
rapidly reach the true SNR when the target SNR increases.
Figs. 2d–f show the estimation results for fluctuating SNRs. We
also confirm that using DT = 2 produces the best estimation results.
These results prove that the proposed SNR estimation methods can
accurately estimate target SNRs with only amplitude measurements
regardless of SNR fluctuation. 

Once the unknown SNR parameter is estimated using the
proposed method, we combine it into an MTT system to improve
the association accuracy between tracks and measurements in a
cluttered environment, as discussed in Section 3.3. More
specifically, the estimated SNR d

^
k
τ
 is used for the likelihood

evaluation (22) in the posterior association (20). In the following
section, we present our MTT system, which uses SNR information.

3 MTT with spatial and amplitude information
In this section, we present a robust MTT system that uses the
spatial and amplitude information.

3.1 Overall framework

Fig. 3 shows the overall framework of the proposed system. As an
input, a set of measurements ℤk containing spatial and amplitude

measurements are given, the track components Ωk
τ

τ = 1

Mk  and the

track existence probability P χk
τ |ℤk

τ = 1

Mk  of all Mk tracks are
recursively updated in the proposed system. Here, the components
of each track comprise N particles xk

n, τ with weights wk
n, τ, and the

updated SNR dk
τ, i.e. Ωk

τ = {xk
n, τ, wk

n, τ}n = 1
N , dk

τ
τ = 1

Mk . χk
τ is the event

that the track τ exists in surveillance volume. 
Each step in the framework can be briefly summarised as

follows: In the measurement selection step, given a set of
measurements ℤk, we select validated measurements ℤk

τ for
existing tracks using the gating technique and amplitude
thresholding. In the SNR estimation step, we then estimate the

Fig. 1  Evaluation schemes of the proposed SNR estimation
(a) Scenario 1: Non-fluctuating SNR, (b) Scenario 2: Fluctuating SNR

 

Table 1 Performance evaluation with NMSEs for both scenarios (1 and 2). For each metric, the best results are marked in
bold

Target SNR Target SNR
Method Threshold (DT), dB 7 dB 8 dB 9 dB 10 dB 11 dB 12 dB Method Threshold (DT), dB 7 dB 8 dB 9 dB 10 dB 11 dB 12 dB
Scenario 1
ML (15) 1 0.439 0.501 0.558 0.595 0.636 0.681 MAP (17) 1 0.441 0.505 0.565 0.604 0.650 0.700

2 0.302 0.259 0.225 0.201 0.180 0.165 2 0.233 0.242 0.161 0.131 0.108 0.087
3 0.702 0.535 0.427 0.352 0.291 0.252 3 0.916 0.440 0.275 0.210 0.147 0.111
4 1.116 0.786 0.645 0.535 0.419 0.333 4 2.261 1.088 0.562 0.353 0.208 0.144
5 2.296 1.307 0.952 0.767 0.604 0.487 5 5.900 2.970 1.295 0.681 0.371 0.222
6 8.290 3.413 1.740 1.076 0.837 0.761 6 10.638 7.457 3.915 1.789 0.884 0.477

Scenario 2
ML (15) 1 0.827 0.906 0.850 0.928 0.956 0.909 MAP (17) 1 0.883 1.002 0.896 0.994 1.025 0.992

2 0.260 0.494 0.497 0.191 0.269 0.373 2 0.224 0.535 0.402 0.132 0.212 0.388
3 0.356 0.984 0.758 0.254 0.379 0.515 3 0.322 1.129 0.524 0.147 0.269 0.496
4 0.437 1.292 1.069 0.308 0.498 0.687 4 0.396 1.774 1.119 0.191 0.619 0.642
5 0.558 1.696 1.360 0.409 0.750 1.042 5 0.483 2.333 1.954 0.325 1.029 0.996
6 0.791 2.061 1.956 0.548 1.401 1.431 6 0.623 2.936 2.833 0.485 1.400 1.404
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SNRs of targets dk
τ with amplitude sets ak − Δ:k

τ  using the proposed
SNR estimation method. In data association, we associate ℤk

τ with
existing tracks using spatial and amplitude likelihood models. This
procedure updates the posterior association probability βi, k

τ  and the
posterior existence probability P(χk

τ |ℤk). In the track state update
step, we update the states of all tracks with the posterior
association probability βi, k

τ  via particle filtering. For more details,
refer to the corresponding sections.

3.2 Measurement selection

In general, the measurement set obtained at one scan is composed
of many measurements originated from multiple targets and clutter
[5, 16].

Let us denote a set of measurements at scan k as ℤk = zi, k i = 1

mk ,

where the measurement vector zi, k = ri, k, θi, k, ai, k
T = [yi, k, ai, k]T is

composed of range ri, k, bearing bi, k and amplitude ai, k elements. As
in probabilistic data association filter (PDAF) [5], we exploit the
gating technique to reduce matching combinations between tracks
and measurements. Using the gating technique, mk

τ validated
measurements in the gate of the track τ is determined by

ℤk
τ = zi, k

τ : vi, k
τ T Sk

τ −1
vi, k

τ ≤ γ , i = 1, …, mk
τ, (18)

where γ is a gate threshold and mk
τ is the number of measurements

in the gate of the track τ; vi, k
τ = yi, k

τ − ȳk |k − 1
τ , is a zero-mean

Gaussian residual with covariance Sk
τ. Given the predicted sample

measurements yk |k − 1
n, τ  with weights wk − 1

n, τ  from (24), the predicted
measurement ȳk |k − 1

τ  and the innovation covariance Sk
τ are

empirically calculated as

ȳk |k − 1
τ = ∑

n = 1

N
wk − 1

n, τ yk |k − 1
n, τ , yk |k − 1

n, τ = hk xk |k − 1
n, τ

Sk
τ = ∑

n = 1

N
wk − 1

n, τ yk |k − 1
n, τ − ȳk |k − 1

τ yk |k − 1
n, τ − ȳk |k − 1

τ T .
(19)

Given the gated measurements, we exploit amplitude thresholding
to filter out false alarms with the threshold DT because the
amplitude from a target is usually stronger than false alarms [2].

Then, we select the amplitude with the maximum strength in the
set and consider it as ak

τ. Therefore, we consider the measurement
with the strongest amplitude in the gate as a target originated one,
which is similar to the strongest neighbour association [6].

Fig. 2  SNR estimation results using the MAP estimation (17) for targets with different SNRs and thresholds. black dotted lines represent the true SNRs of
targets and the coloured lines with different markers represent the estimation results
(a) Scenario 1 and target SNR 7 dB, (b) Scenario 1 and target SNR 9 dB, (c) Scenario 1 and target SNR 11 dB, (d) Scenario 2 and mean of target SNR 15.1 dB, (e) Scenario 2 and
mean of target SNR 15.3 dB, (f) Scenario 2 and mean of target SNR 13.9 dB

 

Fig. 3  Overall framework of the proposed MTT system during one
recursion cycle
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However, we also found out that strongest neighbour data
association [6], which does not use the spatial measurement, causes
tracking performance degradation when associating measurements
with tracks. Furthermore, exploiting only the spatial measurements
for track-to-measurement association significantly reduces
performance in comparison to the performance achieved when both
measurements are used. We provide more details of the
experimental comparison results in Section 4.3. Therefore, in this
paper, we use spatial and amplitude measurements to improve the
association accuracy between tracks and measurements, and we
present an effective association method, which uses both features,
in the following section.

3.3 Data association

We briefly discuss LMIPDA-AI and refer to [21] for further
details. We consider the following two association events:

• χ0, k
τ : None of measurements are associated with track τ.

• χi, k
τ : The measurement zi, k

τ  is associated with track τ.

The posterior association probabilities for both events χ0, k
τ  and χi, k

τ

can be evaluated by

βi, k
τ =

P χ0, k
τ , χk

τ |ℤk, Mk

P χk
τ |ℤk, Mk

=
1 − PD

τ PG
τ

1 − Ψk
τ , i = 0,

P χi, k
τ , χk

τ |ℤk, Mk

P χk
τ |ℤk, Mk

=
PD

τ PG
τ

1 − Ψk
τ ⋅

Λi, k
τ

Φi, k
τ , i = 1, …, mk

τ,

(20)

where PD
τ  and PG

τ  are the target detection and gate probabilities,
respectively.

Then, using the spatial and amplitude features, the likelihood
model Λi, k

τ  can be acquired based on the assumption of independent
spatial measurement yi, k

τ  and amplitude measurement ai, k
τ .

Consequently, Λi, k
τ  is derived such that

Λi, k
τ ≡ p zi, k

τ | χk
τ, ℤk − 1 = p yi, k

τ | χk
τ, 𝕐 k − 1

× p ai, k
τ | χk

τ, 𝔸k − 1 = Λi, k
p, τ ⋅ Λi, k

a, τ,
(21)

where the spatial likelihood function Λi, k
p, τ and the amplitude

likelihood function Λi, k
a, τ become

Λi, k
p, τ = 𝒩 vi, k

τ , Sk
τ = |2πSk

τ |−1/2 exp − 1
2(vi, k

τ )T(Sk
τ)−1

vi, k
τ ,

Λi, k
a, τ = ga

DT(ai, k
τ |d^k

τ)
(22)

Note that the estimated SNR d
^
k
τ
 can be obtained by solving (15) or

(17). The innovation covariance Sk
τ and the residual vi, k

τ  of the track
is computed using (19)

Ψk
τ = PD

τ PG
τ ⋅ 1 − ∑

i = 1

mk
τ

Λi, k
τ

Φi, k
τ

is obtained using the target likelihood (21) and scatterer [21]
models. Φi, k

τ  is probability that measurement zi, k
τ  is originated from

scatterer [21]. The track existence probability is predicted and
updated as

Predict:P χk
τ |ℤk − 1 = α11P χk − 1

τ |ℤk − 1 + α21 1 − P(χk − 1
τ |ℤk − 1) ,

Update:P χk
τ |ℤk =

1 − Ψk
τ ⋅ P χk

τ |ℤk − 1

1 − Ψk
τ ⋅ P χk

τ |ℤk − 1 .

(23)

where transition probabilities α11 ≡ P(χk
τ | χk − 1

τ ) and
α21 ≡ P(χk

τ | χ~k − 1
τ ) are set to 0.98 and 0.02, respectively.

3.4 Track state update

In this section, we propose a Monte Carlo filtering method to
estimate the states of multiple targets, where the behaviours of the
targets can be modelled by either linear or non-linear dynamic
models.

Given a motion model p xk
τ | xk − 1

τ  and a likelihood model
p zk

τ | xk
τ , the Monte Carlo filter (or particle filter) [17] performs the

prediction and update steps. To deal with complicated distributions
which are analytically intractable, we approximate these two steps
using a set of weighted samples xk

n, τ, wk
n, τ

n = 1

N , where N is the
number of particles.

When measurements z1:k
τ  of the track τ up to scan k are

provided, all states of the target up to scan k (i.e. trajectory) x1:k
τ

can be updated well by the prediction-update steps. In most MTT
scenarios, however, it is not easy to identify origin of
measurements because the detection responses are often unreliable
(e.g. false positive, missing and inaccurate detections) and the
responses of other targets are present. To update the states of a
track with unreliable measurements, we need to select a
measurement zk

τ corresponding to the track τ in the set ℤk. In this

work, we select zk
τ among ℤk

τ = zi, k
τ

i = 1

mk
τ

 according to the posterior

association probability βi, k
τ  (20). More specifically, when the

number of particles is N = 100, 100 measurements are generated by
random selection in the set ℤk

τ according to βi, k
τ . This procedure is

rather similar to resampling in particle filtering: a measurement
with a high value βi, k

τ  is more likely to be selected in the set. By
incorporating this measurement selection step, we extend the two-
step recursion of the conventional particle filtering to a three-step
procedure as follows:

Predict: p(xk
τ | z1:k − 1

τ ) = ∫ p xk
τ | xk − 1

τ p(xk − 1
τ | z1:k − 1

τ ) dxk − 1
τ ,

Select: zk
τ ∼ βi, k

τ , zk
τ ∈ zi, k

τ
i = 1

mk
τ

,

Update: p(xk
τ | z1:k

τ ) ∝ p zk
τ | xk

τ p(xk
τ | z1:k − 1

τ ) .

(24)

In our experiment, we found that the proposed filtering method
shows the similar performance with the particle filtering using
probabilistic data association [22], but it has much low complexity
O(N) compared to the complexity O(Nmk

τ) of [22].

4 Simulation results and discussion
In this section, we evaluate the proposed system by comparing it
with other MTT systems for various tracking scenarios.

4.1 Implementation and evaluation metric

To verify the effectiveness of the proposed system shown in Fig. 3,
we implemented tracking systems as described in Table 2 (all with
particle filtering): system (s1) associates a measurement with the
strongest amplitude in each track gate as in [6], whereas system
(s2) only uses spatial measurements (i.e. range and bearing)
without amplitude measurements. Systems (s3)–(s6) use both
measurements. In system (s3), we use the SNRs of targets, but we
do not use them in systems (s4)–(s6). Since no SNRs are available,
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system (s4) designs the amplitude likelihood function (10) using
the marginalisation method [2]. On the other hand, systems (s5)
and (s6) model the function by estimating SNRs with amplitude
measurements, but in different ways. While system (s5) employs
the SMC method [21], system (s6) uses the proposed MAP
method. 

As a performance measure, we use the optimal subpattern
assignment (OSPA) metric [23]. Given the true and estimated sets
composed of states of multiple targets, we measure the OSPA
distance by summing both the localisation and cardinality
distances. The cut-off parameter and the order parameter then are
set to 100 and 1.

4.2 Experimental MTT scenarios

To evaluate the performance of the implemented systems (s1)–(s6),
we generated three MTT scenarios with various dynamic motion
models and experimental conditions.

Trajectory generation: As shown in Figs. 4a–c, we generate the
target trajectories over 500 scans. The (nearly) constant velocity
model [24] is used for scenarios I and II. To assess our system
under more challenging conditions, the constant turn model [24] is
used in scenario III [The initial parameters of the targets and
surveillance time are presented in Table 1 of the Supplementary
material. For all the scenarios, the SNRs randomly fluctuate
according to (16) with a variance Σζ = 10. Note that these
parameters are not provided to trackers in evaluation.]. 

Measurement generation: At each scan k, a set of target
originated measurements containing the range, bearing and
amplitude components are generated with the detection probability
PD = 0.8. Each component is polluted by the additive white
Gaussian noise with standard deviations 3.16 m, 1.4∘ and 1,
respectively. According to the Rayleigh distribution (6), the
amplitudes of targets are determined with their SNRs.

The sensor detection region considered has a radial distance
range [0 m, 1000 m] and angle range [0∘, 360∘]. Within the
detection region, clutter is uniformly distributed. The amount of the
clutter is controlled by the clutter density λ (measurements/scan/
m2). We set the λ = 3 × 10−5, λ = 5 × 10−5 and λ = 10−4, resulting
in 30, 50 and 100 clutter detections per scan, respectively.
Figs. 4d–o present all detected measurements over 500 scans.

Tracking parameters: As a proposal density used for
propagating samples, we simply use the transitional prior motion
p xk

τ | xk − 1
n, τ = 𝒩 xk

τ; f xk − 1
n, τ , Qk

τ , Qk
τ = ΓkQkΓk

T, where f is in
general non-linear transfer function, Γk is the noise gain matrix,
and the noise covariance is set to Qk = diag[10(m/s)2, 10(m/s)2]T.
The noise covariance is significantly different from the true
covariance Qk = diag[1(m/s)2, 1(m/s)2]T used to generate the target
trajectories. This different setup is intended to investigate whether
the proposed system still performs well when the exact dynamic
motion is not available.

Using the track initialisation method [1], the initial states of
tracks are determined with associated measurements during few
recent scans. For all experiments, the initial covariance is set to
Pk

τ = diag[1 m2, 25(m/s)2, 1 m2, 25(m/s)2]T in the consideration of
maximum velocities of moving targets.

To make a fair assessment, systems (s1)–(s6) all exploit the
same measurements and the same number of samples N = 100. The
thresholds of gate and amplitude are tuned by γ = 15 and DT = 0.7.
For marginalisation of the amplitude likelihood function in system
(s3), the SNR range boundary is 0–30 dB, similar that in to [2]. In
system (s4), the SNR is sequentially estimated using the SMC
method with the uniform proposal density function [21].

4.3 Evaluation results

For the three MTT scenarios, Table 3 compares the performance of
systems (s1)–(s6) in terms of the OSPA metric. We compute mean
errors (or distance) and standard deviation by using the evaluation
results for 500 scans and 500 Monte Carlo runs as shown in
Table 3A–C. Moreover, we provide the computational costs per
scan in Table 3D. 

In general, the OPSA errors of all systems slightly increase
when the number of targets is large, and their motions are complex,
such as in scenario III. We found that the system performance can
be significantly enhanced by incorporating amplitude information.
For all OSPA errors Table 3A–C in all scenarios, systems (s1) and
(s3)–(s6) using amplitude show better performance than system
(s2), which does not utilise amplitude information. In particular,
the performance difference becomes larger as the clutter density
becomes higher, i.e. λ = 1 × 10−4 measurements/scan/m2. Based on
this comparison, we confirm that the amplitude truly help trackers
to discriminate between the target and clutter responses more
clearly.

System (s1) based on SND directly uses amplitude information
for track-to-measurement association. On the other hand, for the
association, systems (s3) and (s5)-(s6), which are based on
LMIPDA-AI, employ spatial measurements as well as amplitudes.
When the clutter density is low, system (s1) shows performance
similar to systems (s3), and (s5)-(s6). However, systems (s3) and
(s5)-(s6) show better performance than system (s1) when clutter
densities are increased [The performance gap is obvious in
Table 4.]. The main reason is that more clutter measurements with
high amplitudes are generated within the gates as the clutter
density increases. As a result, system (s1) is likely to associate a
clutter measurement with a high amplitude. 

However, systems (s3) and (s5)-(s6) based on the LMIPDA-AI
do not degrade the tracking performance since they exploit both
spatial and amplitude features when evaluating likelihoods (21). As
a result, even though a clutter measurement has the highest
amplitude in a gate, the total likelihood can be reduced when either
their spatial likelihood is low. In addition, we consider the
statistical properties of amplitude and SNR for amplitude
likelihood evaluation (22). Therefore, their likelihood can be low
even when the highest amplitude does not match well with the
estimated target SNR in the density (4).

In Fig. 5, we further provide the more comparison results of
association accuracies of tracking systems with different types of
measurements based on 500 Monte Carlo runs. To evaluate their
association accuracy, we first select a measurement within the gate
and then investigate whether the selected one comes from a target
or not. As expected, the accuracy of system (s6) using both
measurements is superior to systems (s1) and (s2). 

When the SNR is unknown, Table 3 shows that the performance
of systems (s5) and (s6), which use the estimated SNR, is superior
to the performance of system (s4). In particular, the cardinality
error is very low in all scenarios, as shown in Table 3B. One
possible explanation is that more false alarms and fewer true
measurements are thresholded out with the likelihood function by
using the estimated SNR information. Moreover, the comparison
between systems (s5) and (s6) demonstrates that system (s6),
which uses the proposed method for SNR estimation, performs
better than system (s5).

The computational complexity of systems (s1)–(s6) is presented
in Table 3D. Comparison of system (s2) with systems (s1), (s3)–
(s6) shows that the computation time can be considerably reduced
(almost 30–55%) when amplitude information is used. In
particular, employing amplitude information offers greater cost
benefits when more clutter measurements exist. Furthermore, the

Table 2 Implemented MTT systems for the performance
evaluation
Filters Description
(s1) SND strongest neighbour data association [6]
(s2) LMIPDA without amplitude measurement
(s3) LMIPDA-AI-SNR with known SNR
(s4) LMIPDA-AI-MRG unknown SNR estimation with the

marginalisation method [2]
(s5) LMIPDA-AI-SMC unknown SNR estimation using the sequential

Monte Carlo method [21]
(s6) LMIPDA-AI-MAP unknown SNR estimation using the proposed

method
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results demonstrate that the computational cost is not significantly
increased by the proposed system (s6), and they verify the
effectiveness of the proposed algorithm.

The tracking results for the three MTT scenarios with different
clutter densities are shown in Fig. 4. We can observe that the
trajectories constructed by system (s6) are clearer than those
constructed by system (s2) due to the existence of fewer false
tracks. When the amplitude is not used, too many false tracks are
generated, as shown in Figs. 4f, j and n. This phenomenon is
especially distinct in scenario III, in which many targets move in a
complex dynamic motion.

These results demonstrate that the proposed SNR estimation
algorithm accurately estimates unknown target SNRs and
significantly improves the data association performance. Thus, the
proposed method allows us to boost the overall performance of the
MTT system.

4.4 Evaluation using pedestrian dataset

To evaluate the performance of our system in real scenarios, we
used the publicly available PETS S2.L1 sequence consisting of 795
frames [25] shown in Fig. 6a. The sequence is very challenging
due to the abrupt motion changes of targets and the frequent
occlusion of targets and scene clutter. Similar to the previous
experiment, we allocated the targets to different initial SNRs. At
each frame, we made the target SNRs randomly fluctuate using
(16) with a variance Σζ = 10 and generated clutter with various
clutter densities of λ = 8.2 × 10−5, λ = 1.6 × 10−4 and
λ = 2.5 × 10−4 (measurements/frame/pixel2) [The initial states of
the targets and their surveillance time are given in Table 2 of the
supplementary material.]. 

As discussed in Section 4.2, the same tracking parameters were
also used for implementation except for the covariance Qk, where
Qk = diag[5(pixel/frame)2 5(pixel/frame)2]T by considering the
frame rate. We compared the tracking performance of systems

Fig. 4  For the three MTT scenarios, trajectories of the true targets (thick lines in a-c) and the corresponding estimated targets (thick lines in d-o) are
illustrated. We then compare the performance of systems (s2) and (s6) under different clutter densities
(a) Scenario I: True trajectories, (b) Scenario II: True trajectories, (c) Scenario III: True trajectories, (d) System (s2) and λ = 3 × 10−5, (e) System (s6) and λ = 3 × 10−5, (f) System
(s2) and λ = 10−4, (g) System (s6) and λ = 10−4, (h) System (s2) and λ = 3 × 10−5, (i) System (s6) and λ = 3 × 10−5, (j) System (s2) and λ = 10−4, (k) System (s6) and λ = 10−4, (l)
System (s2) and λ = 3 × 10−5, (m) System (s6) and λ = 3 × 10−5, (n) System (s2) and λ = 10−4, (o) System (s6) and λ = 10−4
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Table 3 For the three MTT scenarios, the time-averaged results of the OSPA metric (mean errors/standard deviation) between
sets of the true and estimated states under different clutter densities for systems (s1)–(s6) are evaluated based on 500 Monte
Carlo simulations. Also, the computational time per scan is calculated by averaging running time during 500 scans
Clutter density λ
(measurements/scan/m2)

MTT systems

(s1)-SND (s2)-w/o amplitude (s3)-known SNR (s4)-marginalisation (s5)-SMC (s6)-proposed
Scenario I
(A) OSPA distance
3 × 10−5 20.858/3.044 21.570/1.851 17.522/2.764 28.264/4.131 27.988/4.138 18.192/2.577

5 × 10−5 23.173/2.201 22.568/1.616 17.364/2.238 28.278/4.095 28.107/4.066 18.870/1.828

1 × 10−4 33.366/1.278 31.095/1.317 17.384/2.297 28.712/3.522 28.312/3.524 19.479/1.532
(B) OSPA cardinality
3 × 10−5 13.346/2.857 14.227/1.643 10.083/2.719 22.675/4.024 22.319/3.996 10.224/2.514

5 × 10−5 13.657/2.022 13.274/1.419 9.773/2.096 22.681/4.042 22.407/4.001 10.809/1.739

1 × 10−4 20.870/1.263 18.102/1.233 9.740/2.187 22.554/3.500 22.084/3.466 10.880/1.436
(C) OSPA localisation
3 × 10−5 7.511/0.161 7.342/0.153 7.438/0.148 5.588/0.055 5.669/0.058 7.968/0.188

5 × 10−5 9.515/0.317 9.294/0.312 7.591/0.146 5.597/0.054 5.700/0.056 8.061/0.186

1 × 10−4 12.496/0.737 12.992/0.811 7.644/0.150 6.158/0.057 6.228/0.058 8.599/0.181
(D) Computational time
3 × 10−5 0.0389 0.0408 0.0386 0.0390 0.0396 0.0617

5 × 10−5 0.0505 0.0556 0.0515 0.0501 0.0507 0.0666

1 × 10−4 0.0998 0.1081 0.0960 0.0993 0.1011 0.0775
Scenario II
(A) OSPA distance
3 × 10−5 14.951/3.744 15.534/3.876 14.058/3.446 14.618/3.592 14.665/3.614 13.464/2.319

5 × 10−5 16.486/3.602 19.155/3.691 14.114/3.445 14.850/3.391 14.861/3.382 13.562/2.058

1 × 10−4 21.434/3.757 27.029/3.444 14.514/3.416 16.637/3.354 16.465/3.336 15.759 /2.008
(B) OSPA cardinality
3 × 10−5 8.283/3.566 9.049/3.657 7.746/3.450 8.201/3.517 8.224/3.516 6.462/1.982

5 × 10−5 9.175/3.397 11.220/3.442 7.774/3.462 8.247/3.377 8.247/3.370 6.689/1.928

1 × 10−4 12.257/2.769 16.215/2.264 8.088/3.423 9.430/3.426 9.370/3.422 8.496/1.919
(C) OSPA localisation
3 × 10−5 6.668/0.197 6.484/0.171 6.311/0.134 6.417/0.159 6.441/0.166 7.002/0.206

5 × 10−5 7.310/0.209 7.934/0.279 6.340/0.135 6.603/0.139 6.613/0.139 6.873/0.136

1 × 10−4 9.177/0.707 10.814/1.550 6.425/0.140 7.207/0.190 7.094/0.176 7.262/0.163
(D) Computational time
3 × 10−5 0.0345 0.0366 0.0343 0.0344 0.0346 0.0559

5 × 10−5 0.0465 0.0499 0.0452 0.0457 0.0463 0.0595

1 × 10−4 0.0931 0.1019 0.0898 0.0917 0.0920 0.0699
Scenario III
(A) OSPA distance
3 × 10−5 29.579/2.842 29.855/2.971 19.995/2.397 34.694/3.069 20.840/2.695 20.145/2.315

5 × 10−5 31.497/3.144 31.696/3.143 20.063/2.403 34.745/2.965 21.573/2.775 20.877/2.379

1 × 10−4 37.912/3.309 37.299/3.273 20.110/2.350 34.540/2.916 21.701/2.431 20.935/2.269
(B) OSPA cardinality
3 × 10−5 19.864/2.560 21.207/2.798 11.393/2.463 27.745/3.038 11.998/2.499 10.757/2.196

5 × 10−5 18.949/3.029 20.230/3.149 11.375/2.461 27.667/2.959 12.624/2.608 11.244/2.283

1 × 10−4 16.840/2.612 16.242/2.506 11.369/2.423 27.389/2.964 11.881/2.090 10.901/2.061
(C) OSPA localisation
3 × 10−5 9.715/0.470 8.648/0.304 8.601/0.116 6.948/0.158 8.842/0.212 9.388/0.173

5 × 10−5 12.548/0.513 11.466/0.338 8.687/0.121 7.077/0.159 8.948/0.235 9.633/0.205

1 × 10−4 21.071/0.961 21.057/1.126 8.740/0.118 7.150/0.144 9.819/0.220 10.034/0.173
(D) Computational time
3 × 10−5 0.0520 0.0542 0.0514 0.0521 0.0522 0.0837

5 × 10−5 0.0660 0.0705 0.0647 0.0658 0.0659 0.0866

1 × 10−4 0.1187 0.1291 0.1149 0.1181 0.1167 0.1007
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(s1)–(s6) in terms of the OSPA metric and the results are shown in
Table 4. System (s6) with the proposed SNR estimation method
shows the better performance than systems (s1), (s2), (s4), and

(s5). Figs. 6c–e show the constructed trajectories. When clutter is
densely distributed, systems (s1) and (s2) produce too many false

Table 4 For the VS-PETS 2009 dataset, the time-averaged results of the OSPA metric (mean errors/standard deviation)
between sets of the true and estimated states under different clutter densities for systems (s1)–(s6) are evaluated based on 500
Monte Carlo simulations. Also, the computational time per frame is calculated by averaging running time during 795 frames
Clutter density λ
(measurements/scan/m2)

MTT systems

(s1)-SND (s2)-w/o amplitude (s3)-known SNR (s4)-marginalization (s5)-SMC (s6)-proposed
VS-PETS 2009 dataset
(A) OSPA distance
8.2 × 10−5 11.796/3.509 14.696/2.207 7.835/1.530 16.539/3.635 14.412/1.581 6.179/1.479

1.6 × 10−4 16.883/3.338 23.867/2.639 11.034/1.360 14.730/3.739 13.953/1.450 11.896/1.365

2.5 × 10−4 41.811/2.396 67.173/1.194 9.391/1.399 17.657/4.089 14.697/1.507 10.193/1.339
(B) OSPA cardinality
8.2 × 10−5 9.768/3.216 13.076/2.050 6.467/1.504 14.386/3.445 12.642/1.549 4.866/1.415

1.6 × 10−4 13.480/2.761 22.087/2.593 9.312/1.280 12.754/3.509 12.067/1.371 10.026/1.254

2.5 × 10−4 38.145/2.534 66.297/1.244 7.578/1.304 15.469/3.944 12.596/1.413 8.198/1.227
(C) OSPA localisation
8.2 × 10−5 2.027/0.033 1.620/0.145 1.367/0.057 2.153/0.160 1.769/0.066 1.312/0.057

1.6 × 10−4 3.403/0.277 1.780/0.184 1.722/0.034 1.976/0.077 1.886/0.059 1.870/0.043

2.5 × 10−4 3.665/0.447 0.875/0.041 1.813/0.047 2.188/0.105 2.101/0.106 1.994/0.078
(D) Computational time
8.2 × 10−5 0.0123 0.0141 0.0145 0.0137 0.0152 0.0273

1.6 × 10−5 0.0174 0.0216 0.0162 0.0168 0.0175 0.0312

2.5 × 10−4 0.0345 0.0524 0.0263 0.0315 0.0298 0.0390
 

Fig. 5  For three MTT scenarios, association performance of systems using different features is evaluated based on 500 Monte Carlo runs
(a) Scenario I, (b) Scenario II, (c) Scenario III

 

Fig. 6  True and estimated trajectories with different tracking systems for the PETS-L1 sequence [25] over 795 frames
(a) PETS-L1 tracking sequences (from left to right): frame 86, frame 192, frame 273, frame 716, frame 740, (b) True trajectories, (c) (s1) and λ = 2.5 × 10−4, (d) (s2) and
λ = 2.5 × 10−4, (e) (s6) and λ = 2.5 × 10−4
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tracks and inaccurate tracks. On the other hand, the proposed
system (s6) successfully constructs long trajectories.

5 Conclusion
In many practical scenarios, target SNRs randomly fluctuate. To
estimate the changed SNRs, we proposed a novel SNR estimation
method via the ML and MAP inference. We further designed an
MTT framework consisting of data association and track state
update parts using the estimated SNR. The extensive evaluation
results confirm that the proposed methods can estimate SNRs and
significantly improve the performance of the MTT system.
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