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a b s t r a c t 

Data augmentation is beneficial for improving robustness of deep meta-learning. However, data augmen- 

tation methods for the recent deep meta-learning are still based on photometric or geometric manip- 

ulations or combinations of images. This paper proposes a generative adversarial autoaugment network 

(GA3N) for enlarging the augmentation search space and improving classification accuracy. To achieve, 

we first extend the search space of image augmentation by using GANs. However, the main challenge is 

to generate images suitable for the task. For solution, we find the best policy by optimizing a target and 

GAN losses alternatively. We then use the manipulated and generated samples determined by the policy 

network as augmented samples for improving the target tasks. To show the effects of our method, we 

implement classification networks by combining our GA3N and evaluate them on CIFAR-100 and Tiny- 

ImageNet datasets. As a result, we achieve better accuracy than the recent AutoAugment methods on 

each dataset. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Image manipulation is beneficial for increasing the size of sam- 

les and features. Many works [1–4] for image classification have 

hown that exploiting this method improves the generalization 

bility of the trained model. However, the fixed augmentation poli- 

ies for dealing with the specific target tasks [5,6] do not transfer 

ell to other tasks in general. Therefore, selecting suitable opera- 

ions automatically according to a target task is indeed important 

o transfer a model to another domain. 

As one of the pioneer works, AutoAugment [5] searches and se- 

ects augmentation operations automatically for a proxy task (i.e., 

maller models and reduced dataset), and then applies the selected 

perations for the classification data set with much more samples. 

However, the computational cost of training and evaluating 

housands of sampled policies is a burden when applying this 

ethod for large-scale tasks. In addition, the operations optimized 

n the proxy task are not likely to be optimal operations on the 

arget task. To resolve the drawbacks of AutoAugement, the adver- 

arial AutoAugment method [7] has been presented. Rather than 

nding appropriate policies by investigating huge operations on 

roxy tasks beforehand, it tries to find the optimal operations by 
∗ Corresponding author. 
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sing the adversarial loss. As a result, it can train a target model 

n full datasets because the overfitting problem from the redun- 

ant samples is alleviated by generating hard samples. 

On the other hand, the adversarial AutoAugment [7] main- 

ains the search space of operations used in AutoAugment [5] . The 

earch space contains 16 geometric and photometric operations. 

his means that the scalability and generalization of the AutoAug- 

ent network can be limited due to the fixed search space. One of 

he remedies is to leverage synthetic samples generated by GANs. 

n [8,9] , GANs can be used for data augmentation and is helpful 

o resolve the target tasks. However, a simple approach to gener- 

te a large number of synthetic samples, and use these as train- 

ng samples is not effective. Moreover, joint training between GANs 

nd target networks is needed to generate meaningful and difficult 

amples for the target network. As a result, a unified framework 

ligible for joint training among a target, policy, and generation 

etworks is required to improve the scalability and generalization 

bility of the AutoAugment method further. 

To achieve this, we propose a novel generative adversarial Au- 

oAugment method. The main idea is to enlarge policy search 

pace by adding new GAN operations with conditional GAN (CGAN) 

10] and data augmentation GAN (DAGAN) [6] . Therefore, we can 

nlarge the policy space by using 16 image and GAN opera- 

ions. We then find optimal policies by adversarial training be- 

ween a target network and a policy controller network. Subse- 

uently, we generate various samples according to the selected 

perations and use them for training a target network. Based 

https://doi.org/10.1016/j.patcog.2022.108637
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108637&domain=pdf
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Fig. 1. The proposed framework of GA3N. In the generative part, the policy applier generates a training batch with augmented samples by applying update sample policies 

to image samples, and a target network is trained with the batch by minimizing a target loss. On the other hand, the policy controller predicts new augmentation policies 

by maximizing the target loss at the next iteration in the controller part. Here, CGAN and DAGAN are added in the policy search space for generating new synthetic images. 

Fig. 2. Two augmentation policy search spaces by using synthetic image generators as augmentation operators. Scenario (a) represents the controller-dependent search for 

18 operations including CGAN Op Gc17 and DAGAN Op Gd18 . On the other side, scenario (b) illustrates the GAN-dependent search that forcing one of the operations of sub-policy 

to be one of the generative models Op G (c;d) . 
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n this idea, we efficiently combine the adversarial AutoAugment 

ith the recent GANs and present a GA3N framework shown in 

ig. 1 . 

For training GA3N, we pre-train CGAN [11] and DAGAN [6] on 

he given datasets to learn the data distribution of the given im- 

ges. Then, we construct a policy search space with 16 image ma- 

ipulations and these two synthetic image generation operations 

f GANs (in total 18 operations). For the extended policy space, we 

nd optimal operations via the adversarial training between the 

olicy controller and target networks. During this adversarial train- 

ng, the target network can be trained by minimizing the task loss 

f the target task which is evaluated with the real and augmented 

amples together. On the other hand, the policy network can be 

rained by maximizing the loss in order to generate harder aug- 

ented samples at the next iteration. By feeding various samples 

o the target network, we can improve the robustness of this net- 

ork. As a result, this adversarial training is beneficial for improv- 

ng the generalization and discrimination abilities of both policy 

nd target networks, respectively. 

For the construction of a policy search space shown in Fig. 2 , 

e present two kinds of operation selection methods: a controller- 

ependent selection and a GAN-dependent selection. In the former, 

ach generative network is considered as one operation and con- 

ained into a unified policy search space with other operations. 

ach sub-policy consists of two operations selected by the pre- 

icted actions of one policy controller. Therefore, any GAN oper- 
2 
tion could not be contained in the augmentation policies. On the 

ther hand, in the latter one, we force each sub-policy to con- 

ain at least one of the GAN operations. This can be achieved by 

ividing a policy space into two subspaces. Here, one sub-space 

ontains GAN operations only, but the other contains conventional 

mage manipulation operations. In addition, two individual con- 

rollers are trained to provide the proper actions for each subspace. 

ccording to the actions of both controllers, one operation can be 

elected independently in each subspace, and the selected two op- 

rations can compose a policy subset. We implement these con- 

rollers based on single-layer LSTM with a different numbers of 

STM units as shown in Fig. 5 . In our evaluation, we compare these 

olicy search methods on several tasks as shown in Section 5.4 . For 

he evaluation on CIFAR-100 and Tiny-ImageNet, we improved the 

lassification accuracy by 0.3% and 1.1% compared to the [7] and 

12] , respectively. 

The contributions of this paper can be summarized as follows: 

• Proposing a new adversarial AutoAugment framework with sev- 

eral GANs for automated data augmentation depending on a 

target task; 
• Integrating two adversarial learning approaches into the unified 

framework to achieve the generation of both hard and synthetic 

samples; 
• Presenting two different methods for constructing policy search 

space and their verification with the extensive ablation study; 



V. Chinbat and S.-H. Bae Pattern Recognition 127 (2022) 108637 

2

f

g

t

e

n

f

m

o

l

a

i

f

l

o

d

h

d

s

p

i

n

a

e

i

e

i

t

t

[

t

t

s

s

c

t

a

f

a

b

f

d

c

n

t

t

w

t

h

s

e

t

d

f

d

t

n

t

w

(

a

a

i

a

i

c

R

s

e

t

(

a

p

u

w

t

H

t

t

t

d

B

s

f

o

n

a

f

a

p

e

3

t

f

t

b

t

i

w

S

3

w

p

p

i

p

p

p

w

m

i

s

• Presenting distinct improvement compared with recent Au- 

toAugment methods [5,7] on CIFAR-100 and Tiny-ImageNet 

datasets. 

. Related work 

Data augmentation: Since the quantity of data usually af- 

ects the performance of a target model, data augmentation is re- 

arded as crucial in many research areas. As a simple augmenta- 

ion method, [13,14] change the photometric and geometric prop- 

rties of an image by applying several image manipulation tech- 

iques. In particular, they exploit kernel filters, geometric trans- 

ormations or image mixing. Although each image manipulation 

ethod has the low computational complexity itself in general, the 

verall computational complexity of training a target model is not 

ess because a bunch of augmented images should be generated 

nd used for training a generalized network [13–15] . This problem 

s occurred due to the similar statistics of augmented images. 

For more effective augmentation, some deep learning methods 

or data augmentation [16–19] have been developed. In particu- 

ar, adversarial training between networks is key in these meth- 

ds. There are two approaches using this adversarial training for 

ata augmentation: (1) Synthetic image generation-based and (2) 

ard example mining-based approaches. The first one is to pro- 

uce synthetic images using GANs [6,8,10,20–22] . By the adver- 

arial training between a generator and a discriminator, they can 

roduce large synthetic images and uses these ones as augmented 

mages. The other approach is to determine the best set of combi- 

ations among many augmentation operations to reduce a loss of 

 target model. Therefore, the latter one is more focused on gen- 

rating hard examples which increase the loss of a target model 

nstead of generating synthetic images. 

Synthetic image generation-based methods: In GANs, a gen- 

rator struggles to fool a discriminator by generating synthetic 

mages similar to real ones. Many works [8,10,11,23] proved that 

raining a target network with extra synthetic images is effective 

o increase the accuracy in the many fields of computer vision 

24] . The most representatives are object classification [5] , detec- 

ion [25] , and segmentation [24] . Among these, the most studied 

ask is object classification. Here, the variability of the training 

amples is the most important. From this perspective, the synthetic 

amples of GANs are useful to achieve that. One of the most suc- 

essful examples is CycleGAN [8] . It reduces the discrepancy when 

ranslating an image from a source domain to a target domain with 

n adversarial loss. Furthermore, the Balancing GAN [21] uses GAN 

or data augmentation on imbalanced datasets. Although our GA3N 

nd BAGAN harness GANs for improving target network accuracy, 

oth methods are clearly different in the technical aspect: BAGAN 

ocuses on generating minority-class images to make the balanced 

ataset, whereas our method generates the hard samples to de- 

eive a target network. 

In order to satisfy the generalization and robustness of a neural 

etwork, the quality and hardness of a training dataset are impor- 

ant. To this end, the methods for making the train samples harder 

han the original data is suggested for data augmentation [26] , 

hich is called the hard example-mining based method. In brief, 

his method generates more difficult samples that a target network 

andles by mining and combining existing samples. For this goal, 

ome online-hard example mining methods [27] choose the hard- 

st sample pairs in a mini-batch using a metric distance. In addi- 

ion, semi-online mining methods [28–30] select sample pairs ran- 

omly from the hard enough sample pairs in a mini-batch. 

In recent years, meta-learning [31] , which uses the learned in- 

ormation from a task to improve a target task, has been intro- 

uced for hard example mining methods [5,7,32,33] called Au- 

oAugment. The main idea of these methods is to optimize a target 
3 
etwork with the feedback (i.e., augmentation policy) of the con- 

roller network. During the training iterations, the controller net- 

ork produces harder augmentation policies to maximize the loss 

 or reward) of the target network. As one of pioneer works, smart 

ugmentation [32] trains a target network by merging multiple im- 

ges while the policy network tries to find the best combination of 

mages with the loss of the target network. AutoAugment [5] uses 

 reinforcement algorithm to find an optimal augmentation pol- 

cy among 16 augmentation operations. They define a policy by 

ombining several operations and each policy is determined by an 

NN-based controller network. Although the experimental results 

how a great improvement for the classification accuracy on sev- 

ral datasets, the training process is rather costly and complex due 

o the pre-training on proxy tasks. 

To overcome this limitation, population-based augmentation 

PBA) [33] present the dynamic scheduler network to learn the 

ugmentation schedule rather than using the fixed augmentation 

rocess. However, this method still needs to pre-train the sched- 

ler on the proxy dataset. For learning the controller network 

ithout the pre-training, the adversarial AutoAugment [7] presents 

he adversarial learning based on the Min-Max game of GANs. 

owever, they use adversarial learning to determine the augmen- 

ation policy for training a target network. Therefore, the augmen- 

ation policy is still limited to the transformation of the existing 

raining images. 

In order to maximize the effects of the data augmentation, we 

esign our GA3N based on two adversarial learning approaches. 

y incorporating CGAN [10] and DAGAN [6] into our framework as 

hown in Fig. 1 , our GA3N can generate synthetic images. As an ef- 

ect, the operation search space can be extended with added GAN 

perations. From the adversarial joint training between a target 

etwork and a policy controller, the policy network seeks to find 

ugmentation operations which minimize the target loss. There- 

ore, a target network in our GA3N can be trained with synthetic 

nd hard samples generated from these adversarial learning ap- 

roaches. These contribute to improving the robustness and gen- 

ralization of a target model. 

. Methodology 

In this section, we present the methodology for our Genera- 

ive Adversarial AutoAugment network. We first explain an overall 

ramework of GA3N in Section 3.1 . The motivation of the genera- 

ive adversarial training between policy and target networks will 

e discussed in Section 3.2 . Then, we present a method to ex- 

end the operation search space by adding the generative models 

n Section 3.3 . Finally, the joint learning framework for target net- 

ork training and augmentation policy search will be presented in 

ection 3.4 . 

.1. Overall framework of GA3N 

The proposed overall framework is shown in Fig. 1 . The frame- 

ork mainly consists of the generative and controller parts. We ex- 

lain the components of each part as follows: 

Generative part: The synthetic and the augmented hard sam- 

les are generated and provided to the target network. In the pol- 

cy space, the sample policy is updated from the outputs of the 

olicy controller and is fed to the policy applier one-by-one. The 

olicy applier augments training samples by applying the updated 

olicy for a given input sample. Then, a target network is trained 

ith the larger batch containing real and augmented samples by 

inimizing its loss, and the loss of this network is fed to the pol- 

cy controller. 

Controller part: The policies within the policy search space are 

elected from the output of the policy controller. Here, the policy 
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Table 1 

The list of the augmentation operations used for the extended search space. The top 16 image manipulation operations use 

the magnitude within the given range, but the GAN operations do not use the magnitude. 

Operation Type Operation Description 

ShearX (Y) Shearing the image horizontally (vertically) with the magnitude range of [-0.3, 0.3] 

TranslateX (Y) Translating the image horizontally (vertically) by the pixel magnitude range of [-150, 150] 

Rotate Rotating the image with the degree magnitude range of [-30, 30] 

AutoContrast Modifying the image contrast by maximizing the black and white pixels 

Invert Inverting the pixels of the image 

Equalize Equalizing the image’s histogram 

Solarize Inverting the pixels above the threshold magnitude range of [0, 256] 

Posterize Reducing the each pixel’s bits in the range of [4, 8] 

Contrast Modifying the contrast of the image in the range of [0.1, 1.9] 

Color Adjusting the color balance of the image in the magnitude range of [0.1, 1.9] 

Brightness Adjusting the brightness of the image in the magnitude range of [0.1, 1.9] 

Sharpness Adjusting the sharpness of the image in the magnitude range of [0.1, 1.9] 

Cutout Setting the square sized pixels into gray in the magnitude range of [0, 60] 

Sample Pairing Add a random image to another image from the same mini-batch in the magnitude range of [0, 0.4] 

CGAN Generative pretrained model for Conditional GAN 

DAGAN Generative pretrained model for Data Augmentation GAN 
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ontroller based on a single-layer LSTM can predict the operation 

ype and magnitude in a sequential manner. The training of this 

ontroller network is achieved by maximizing the propagated loss 

rom a target network. The synthetic generators of CGAN and DA- 

AN are added in the augmentation operation space. Here, each 

enerator is also trained with the corresponding discriminator in 

n adversarial manner. 

.2. Motivation of two adversarial learning in GA3N 

Adversarial learning [34] is one of the most powerful methods 

o make the target network optimized. In some sense, this is analo- 

ous to reinforcement learning since they adjust rewards at current 

tates. As similar to GAN learning, which encourages a generator 

o produce realistic samples to deceive a discriminator, adversarial 

earning can be used to find optimal policies so that maximize the 

eward signal to a given dataset. This adversarial learning is named 

dversarial AutoAugment [7] . In general, the determined policies 

nclude augmentation operations to generate hard examples which 

s difficult to distinguish from a target network. For image classifi- 

ation, this training with hard samples is helpful to construct the 

ore accurate decision regions for the training set. 

On the other hand, it is also crucial to improve the generaliza- 

ion of a classification network. Although different combinations of 

anipulation operations determined by the adversarial AutoAug- 

ent increases the diversity of images for photometric and geo- 

etric variations, it cannot generate new images (but with simi- 

ar distribution to training data). To achieve this, we use additional 

mage generation operations of CGAN and DAGAN which is one of 

he main contributions of our paper. By our effective joint train- 

ng scheme of these two adversarial learning methods as shown in 

ig. 1 (i.e. adversarial learning between target and policy networks 

nd generative adversarial networks), our GA3N can improve the 

eneralization and discrimination abilities of a target network. 

.3. Extended search space - GAN integration 

In AutoAugement, the search space is presumed to contain im- 

ge operations to be applied for data augmentation during a target 

etwork training. A policy is constructed with the combinations 

f the operations. In this paper, we adopt the same search space 

ith [7] for the traditional operations. We also omit a probability 

o select each operation (c.f., AutoAugment [5] ) A policy contains 5 

ub-policies, and each sub-policy contains two operations and the 

peration magnitudes. At initial training 5 sub-policies are chosen 

andomly within a search space, but determined by the outputs of 

he controller network at the next iteration. 
4 
In the implementation of [5] and [7] , the search space includes 

6 geometric and photometric image augmentation operations as 

hown in Table 1 . In this work, we add two synthetic image gener-

tion operations using CGAN and DAGAN. CGAN can generate syn- 

hetic images depended on a given class label. By feeding the aux- 

liary information to both the generator and discriminator, CGAN 

an generate more class-specific images. Here, the auxiliary in- 

ormation can be any information (e.g. class label or data from 

ther modalities). On the other hand, DAGAN can learn a model 

ith larger invariance in different source domains. It first learns 

n embedding feature of input using a generator, and then learn a 

ransformation function which can map from the low-dimensional 

eature to other within-class images. Therefore, we use CGAN and 

AGAN as synthetic image generation operators because they are 

omplementary to each other. Table 7 and 8 illustrate the impact 

f search space extension with each GAN. 

By using synthetic images for the training of the target net- 

ork, a training set gets diverse more and it improves the gen- 

ralization ability of the network. Here, we present two policy 

earch methods as shown in Fig. 2 : Controller-dependent search 

nd GAN-dependent search. In both searches, the search space is 

xpanded for the policy possibilities from | S| = (16 × 10) 10 [7] to 

 S| = (16 × 10 + 2) 10 for the Controller-dependent search and | S| =
16 × 10) 5 + 2 5 for the GAN-dependent searches. Here, | S| is the 

earch space scale of possible policies. Each of the 16 image ma- 

ipulation operations has magnitudes discretized by 10 levels, but 

wo CGAN and DAGAN operations do not use magnitude for image 

eneration. 

.3.1. Controller-dependent search 

For 18 operations in Table 1 , the types and magnitudes of op- 

rations are determined with the predictions of the controller net- 

ork. From the predictions, a single policy is constructed by con- 

atenating 5 different sub-policies. Here, the sub-policy consisting 

f 2 operations are determined by the predicted results of the con- 

roller. In Fig. 3 and 4 , augmented images from this controller- 

ependent search are shown. 

.3.2. GAN-dependent search 

For using synthetic image generation operators more frequently, 

e make a sub-policy contain one image generation operation 

rom either CGAN or DAGAN. To achieve this, we devise common 

nd individual controllers for selecting GAN operations in different 

ays. We use a single LSTM network as the common controller. 

e select one of the non-GAN operations according to the pre- 

ictions of the LSTM but select one of two GAN operations ran- 
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Fig. 3. Augmented images by applying each policy for a training image with a controller-dependent search on the Tiny-ImageNet dataset. 

Fig. 4. Augmented images by applying each policy for a image with the controller-dependent search on the CIFAR-100 dataset. 
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omly. On the other hand, for the individual controller, we imple- 

ent two different LSTM networks to assure the GAN and tradi- 

ional operations independently. For the GAN selection controller, 

e use 2 cells of a single-layer LSTM only because the magnitude 

s not necessary to be sampled for GAN operations. It seems that 

ividing the policy search space into two sub-spaces which are im- 

ge manipulation and generation. The comparison results of using 

oth common and individual controllers are shown in Table 4 . 

.4. Adversarial joint training 

Based on adversarial training between the policy controller and 

arget network, we jointly optimize target network training and 

olicy search. Given a training sample x , we denote the policy net- 

ork as P( x , θ ) . The policy network aims at increasing the loss 

f a target network T (x, ω) . In specific, P( x , θ ) struggles to in-

rease the loss of T (x, ω) by generating harder policies. On the 

ther hand, T (x, ω) attempts to minimize its target loss. For con- 

enience, the problem of training T (·, ω) by minimizing the target 

oss L = [ T (a ( x ) , ω) , y ] can be expressed with some random aug-

entation operation a ( x ) as follows: 

ω 

∗ = argmin ω E x ∼�L [ T (a ( x ) , ω) , y ] (1) 

here � is a training set, and each sample consists of an image x 

nd class label y . 
5 
For improving the generalization and efficient training of a tar- 

et network, we can use the predictions τ (x ) (i.e., augmentation 

olicies) of the policy network when augmenting an input sample 

 . Therefore, the above minimization problem can be represented 

ith τ (x ) as 

ω 

∗ = argmin ω E x ∼ω E τ∼P( x ,θ ) L [ T (τ ( x ) , ω) , y ] (2) 

For N batches, we can represent the loss for each augmentation 

olicy τ (m ) as 

L m 

= 

1 
N 

N ∑ 

n =1 

L [ T (τm 

, ( x n ) , ω) , y n ] (3) 

This problem can be solved using the stochastic gradi- 

nt descent (SGD). With α learning rate and M policies ( M ∈ 

 2 , 4 , 8 , 16 , 32 } in our experiment), the training procedure of the

arget network is 

ω t+1 = ω t − α 1 
M·N 

M ∑ 

m =1 

N ∑ 

n =1 

L [ T (τm 

, ( x n ) , ω) , y n ] (4) 

Using Eq. (3) , we can represent the loss in brief 

ω t+1 = ω t − α 1 
M 

M ∑ 

m =1 

ω 

∗
L m 

(5) 

Training a policy controller network can be achieved by maxi- 

izing the loss Eq. (3) for each policy. Using the REINFORCE al- 

orithm [35] , we can learn the policy network. Let p m 

denote the 
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robability for the policy τm 

which is differentiable w.r.t θ of the 

etwork. The controller network can be updated with the learning 

ate β as 

θ ∗
e +1 = θe + β 1 

M 

M ∑ 

m =1 

̂ L m 

∇ θ log p m 

(6) 

here ̂  L i is the normalized moving average over the mini-batches. 

he moving average loss is considered as the reward of the pol- 

cy network. In our implementation, we use a single-layer LSTM as 

n RNN controller. In a sequential manner, this controller predicts 

 actions sequentially which correspond to 2 augmentation opera- 

ions and magnitudes. 

. Implementation 

In this section, we present implementation details of the main 

odules in our GA3N shown in Fig. 1 . We adopt the search space

f AutoAugment for the 16 traditional augmentation operations 

s used in AutoAugment and Adversarial AutoAugment. To extend 

his search space, we train the generative GAN models (i.e., CGAN 

nd DAGAN) for synthetic image generation. When augmenting im- 

ge samples in a training batch, we use updated policies within a 

earch space shown in Fig. 2 . We sequentially apply each opera- 

ion of a policy for a given image. From adversarial training be- 

ween a target network (classifier) and policy controller network, 

he best augmentation policy can be updated at each iteration. 

s mentioned, the adversarial training is achieved by minimizing 

nd maximizing a loss of a target network during alternative train- 

ng. The overall algorithm for training our GA3N can be shown in 

lgorithm 1 . 

Algorithm 1: Adversarial training of GA3N. 

Input : Samples with images x and object labels y 

Output : Trained target T and policy P networks 

1 Initializing parameters of T ( x , ω) and P( x , θ ) ; 

2 // CGAN or DAGAN pre-training; 

3 for 100 epochs do 

4 for K iterations do 

5 Construct a batch of J samples consisting of noise, 

image, and label triplets ; 

6 Update the discriminator with the batch using SGD; 

7 end 

8 Construct a batch of J samples consisting of noise, image, 

and label triplets ; 

9 Update the generator with the batch using SGD ; 

10 end 

11 // Target T and policy P network training; 

12 for N epochs do 

13 Initialize { L m 

} M 

m =1 
losses for M policies; 

14 Predict { p m 

} M 

m =1 
probabilities for M policies ; 

15 for K iterations do 

16 Construct a batch by applying M policies for each real 

image; 

17 Evaluate L m 

using Eq. (3); 

18 Update T using Eq. (5); 

19 end 

20 Update P using Eq. (6) 

21 end 

.1. Policy controller 

For making policy predictions more accurately at the current 

teration, leveraging predictions at the previous iteration is crucial. 
6 
o achieve this, we can use a recurrent neural network (RNN) in 

rder to predict the current policy by feeding previous predictions 

s inputs. However, a simple RNN has limited short-term memory, 

nd could not scale-up the problem of predicting policy within a 

arge search space. 

To alleviate this problem, we can use long short-term memory 

s the augmentation policy network as also used in [5,7] . We im- 

lement a single-layer LSTM and use it for the predictions of sev- 

ral operations and magnitudes as shown in Fig. 5 . Here, for the 

equential predictions, the parameters of the controller network 

re shared and fixed for efficient training. As short-term predic- 

ions, the 4 parameters for 2 operations for one sub-policy are in- 

erred. During M × 5 iterations, M policies with 5 sub-policies are 

redicted and propagated to the policy applier in the generative 

art shown in Fig. 1 . The sensitivity analysis for the hyperparame- 

er M are provided in Section 5.4 . 

.2. Generative adversarial networks for data augmentation 

Because the variability of augmented images by using the tradi- 

ional operations only is rather limited, we introduce two GANs in 

rder to generate new synthetic images. For improving the quality 

nd variability of the synthetic images together, we should gener- 

te synthetic images within a class and between classes. To this 

nd, we use conditional GAN which can generate class-wise syn- 

hetic images more accurately by feeding the condition class la- 

els to a generator and discriminator. On the other hand, we in- 

roduce DAGAN for improving cross-class synthetic image genera- 

ion. Moreover, both GANs show the effective adversarial training 

nd good generalization ability for the slow-data regime. 

In our implementation, we pre-train CGAN and DAGAN on 

IFAR-100 and Tiny-ImageNet datasets. Therefore, both GANs have 

he basic ability to generate synthetic images on each dataset. 

hen, we integrate the trained GANs into GA3N and use them as 

dditional data augmentation operations. We present more details 

f CGAN and DAGAN implementation in the next section. 

.2.1. Conditional GAN (CGAN) 

CGAN [11] is an extended version of GAN by using an auxil- 

ary variable y (e.g. image patches, class labels and attributes). The 

osses of generator and discriminator of this CGAN are dependent 

n y as follows: 

min G max D E 

x ∼p data (x | y ) 
[ log D (x | y )] + E 

x ∼p z (z) 
[ log (1 − D (G (z| y )))] 

(7) 

The auxiliary data y is fed to both generators and discriminators 

s inputs. 

x and z represent the training image and an input noise, re- 

pectively. The overall architecture of this generator is shown in 

ig. 6 . We feed the generator an (RGB) colored image x of 32 × 32 ,

ts label y and 2-dimensional random noise z that is distributed in 

aussian distribution. 

About the discriminator, we build a network that aims to 

istinguish the real and synthetic images. The discriminator has 

ropout, Embedding layers as an Input layer, Convolution, Leaky 

eLU, and Batch Normalization layers. 

We then feed the real and synthetic images combined with the 

uxiliary y to the discriminator and use the predicted classes for 

omputing Eq. (7) . We set the dropout probability as 0.75 and the 

eaky ReLU scale as 0.2. After going through convolutional, batch 

ormalization, and LeakyReLU layers, the discriminator outputs a 

calar prediction score, in the final layer. To train CGAN, we set 

he batch size to 96 on both CIFAR-100 and Tiny-ImageNet datasets 

nd train for 100 epochs. As an optimizer, we use the Adam opti- 

izer for the discriminator with 0.0 0 02 learning rate and 0.5 beta 
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Fig. 5. The architecture of the policy controller network implemented by the shared LSTM. 

Fig. 6. The generator architecture of conditional GAN. Given the condition variable (i.e., an image), the generator produces a synthetic image with a random noise image. 
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alue. The model parameters for the training generator are set sim- 

larly to the discriminator. 

.2.2. Data augmentation GAN (DAGAN) 

DAGAN [6] has a similar architecture as CGAN in order to gener- 

te synthetic images for data augmentation. Different from CGAN, 

t uses a Gaussian latent vector but also embedding representation 

rom a generator as inputs when generating a new image. With 

he auxiliary input, the generator of DAGAN produces more realis- 

ic and various images for within-class objects, and it can be fur- 

her applied for image generations for novel classes. 

Given a new image x from a generator, we can obtain the 

eaningful embedding representation with a generator r by r = 

(x ) . We feed r and random latent vector z from the standard 

aussian distribution to an augmentative neural network f (·) to 

enerate a new image x ∗ by using x ∗ = f (r, z) . At the next itera-

ion, we use x ∗ as an input of g(·) , and the same processes are

epeated until the number of augmented samples is enough. 

. Experiments 

In this section, we provide evaluation and comparison results 

f GA3N for object classification. We evaluate our GA3N on public 

vailable CIFAR-100, Tiny-ImageNet, and ImageNet datasets. 

.1. Datasets and backbones 

We provide the details of the datasets used for evaluation. 

IFAR-100 [36] contains color images of the size 32 × 32 for 100 

bject classes, and each class has 600 sample images. In total, 60K 

mages are provided. We use 50K images and 10K images for train- 

ng and validation, respectively. 

ImageNet is the large-scale dataset which has over 1.2 million 

raining, 50k validation and 10k test images for 10 0 0 object classes, 

espectively. 

Tiny-ImageNet dataset is the data subset of ImageNet [2] . The 

mount of this dataset is around 20% of ImageNet. There are 200 

bject classes, and 500 color images of the size 64 × 64 are given 
7 
or each class. Also, 500 images for each class contain 50 valuation 

nd test images. 

For the backbone of our target network, we use WideResNet28- 

0 network on CIFAR-100. Similar to adversarial AutoAugment [7] , 

e use the ResNet-50 on Tiny-ImageNet. 

.2. Evaluation metrics 

As evaluation metrics, we compute Top-1 and Top-5 error rates 

hich are commonly used for classification evaluation [7] . In the 

op-1 score, a class prediction with the highest probability is 

atched with the corresponding ground truth (GT) object label 

r not. On the other hand, the Top-5 error rate is evaluated by 

he best 5 predictions (with the highest probabilities for an object 

lass) with the object GT label. Thus, a predicted result is consid- 

red as true positive when the matched labels are the same. 100% 

ccuracy for each metric means that all predicted results of a clas- 

ifier are perfectly matched with the corresponding GT labels. 

.3. Comparison with other AutoAugment methods 

To show the effects of our GA3N, we compare our method 

ith several augmentation methods as shown in Table 2 and 3 

n CIFAR-100 and Tiny-ImageNet datasets, respectively. We provide 

he details of the reimplementation for other AutoAugment meth- 

ds and compare results in this section. 

.3.1. Reimplementation of recent AutoAugment methods 

For more a fair comparison, we have re-implemented AutoAug- 

ent [5] and Adversarial AutoAugment [7] . Also, the official codes 

re not available to the public. We apply the same backbone and 

ugmentation policy network for these methods. The main differ- 

nce from our GA3N is that they use 16 augmentation operations 

xcluding GAN operations. 

.3.2. Comparison results 

To prove the effectiveness of our GA3N, we compare our 

ethod with several augmentation and classification methods on 

IFAR-100 and Tiny-ImageNet datasets as shown in Table 2 and 3 , 
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Table 2 

Evaluation results of our GA3N by using different the number of policies ( M) and policy selection methods on CIFAR-100 datasets. We also compare our 

GA3N with recent augmentation methods: AutoAugment [5] , Adversarial AutoAugment [7] , PuzzleMix [37] and Stochastic Weight Averaging (SWA) [38] . For 

more comparison, we re-implement AA Re-Impl [7] and evaluated with different M policies. Bold and italic fonts indicate the best result of our GA3N and 

the best results of other methods, respectively. 

Methods 

Number of policies ( M) 

2 4 8 16 32 N/A Average 

Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 

GA3N (Controller-Dependent) 23.4% / 9.1% 20.5% / 7.0% 15.48% / 4.4% 15.35% / 4.1% 19.5% / 6.7% - / - 19.23% / 6.46% 

GA3N (GAN-Dependent) 25.3% / 11.3% 22.2% / 9.7% 19.8% / 7.1% 17.3% / 6.8% 18.4% / 8.4% - / - 20.6% / 8.66% 

AutoAugment [5] - / - - / - - / - - / - - / - 20.0% / - - / - 

Adversarial AutoAugment [7] - / - - / - 15.67% / - - / - - / - - / - - / - 

AA Re-Impl [7] 25.8% / 11.6% 22.7% / 9.0% 15.95% / 7.5% 16.4% / 8.3% 21.2% / 9.8% - / - 20.41% / 9.24% 

PuzzleMix [37] - / - - / - - / - - / - - / - 15.95% / - - / - 

SWA [38] - / - - / - - / - - / - - / - 15.84% / - - / - 

Table 3 

Evaluation results of our GA3N by using different the number of policies ( M) and policy selection methods on Tiny-ImageNet dataset. We also compare our 

GA3N with recent augmentation methods: Tiny-ImageNet Challenge [12] . For more comparison, we re-implement AA Re-Impl [7] and evaluated with different 

M policies. Bold and italic fonts indicate the best result of our GA3N and the best results of other methods, respectively. 

Methods 

Number of policies ( M) 

2 4 8 16 32 N/A Average 

Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 

GA3N (Controller-Dependent) 60.0% / 38.1% 55.7% / 28.7% 47.6% / 25.5% 45.2% / 23.2% 47.2% / 25.3% - / - 51.6% / 27.94% 

GA3N (GAN-Dependent) 65.3% / 38.6% 59.7% / 30.2% 54.1% / 27.4% 49.9% / 24.1% 58.7% / 28.2% - / - 57.54% / 29.7% 

AA Re-Impl [7] 66.7% / 40.2% 61.2% / 33.9% 52.7% / 28.3% 54.6% / 29.5% 60.8% / 32.7% - / - 59.2% / 32.92% 

Vanilla model [39] - / - - / - - / - - / - - / - 46.3% / - - / - 
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espectively. As mentioned, the experimental results of AutoAug- 

ent [5] and Adversarial AutoAugment [7] are made based on our 

e-implementation. In Table 2 , we have found that the AutoAug- 

entation is indeed beneficial for improving the classification ac- 

uracy when comparing with PuzzleMix [37] and SWA [38] . In par- 

icular, our GA3N with M = 16 achieves the best accuracy among 

hem. This result is slightly better about 0.32% than the state-of- 

he-art result of [7] . On Tiny-ImageNet datasets, we have compared 

ur results with the vanilla model [39] with ResNet-50 of this 

iny-ImageNet challenge as in Table 3 . By using the same back- 

one, our GA3N with M = 16 produces better accuracy by 1.1% than 

39] . 

For more comparison, we have re-implemented Adversarial Au- 

oAugment [7] (AA Re-Impl) with the same backbones for more 

omparison. As shown in Table 2 , the score of re-implemented AA 

e-Impl (15.95%) is very close to the original score [7] (15.67%) on 

he CIFAR-100 set. As shown in Table 2 , our GA3N achieves the bet-

er scores by 0.6%/3.4% (Top1/Top5) than scores of AA Re-Impl on 

IFAR-100. In particular, the accuracy gap between the GA3N and 

A Re-Impl is 7.5%/5.1% (Top1/Top5) on the Tiny-ImageNet. There- 

ore, these comparison results obviously show the superiority of 

ur GA3N. 

.4. Ablation study 

To evaluate each method of our GA3N, we conduct the ablation 

tudy. We first evaluate GA3N with the different number of poli- 

ies ( M) as shown in Table 2 and 3 . We change M from 2 to 32. As

increases, the classification accuracy gets higher in general. This 

ndicates that the diversity of augmentation operations in a policy 

et is important for improving a classification model. On both sets, 

e obtain the best results with M = 16 . The accuracy is degraded

hen M = 32 . This means that using the same augmentation sev- 

ral times is not effective. 

In addition, we compare the GA3N with controller-dependent 

earch and GAN-dependent search methods (refer to Section 3.3 ). 

n this comparison, we use different M. In most cases, the 

ontroller-dependent search provides higher gains. For the GAN- 
8 
ependent search, we implement common and individual con- 

rollers to investigate the effect of this search. In both con- 

rollers based on GAN-dependent search, one of the GAN oper- 

tions should be contained in a sub policy. In the former one, 

e select GAN operations randomly without using the additional 

ontroller. On the other hand, we use an extra LSTM shown in 

ig. 5 for selecting GAN operations in the latter controller. Com- 

ared to the LSTM which controls 16 image manipulation opera- 

ions, this one consists of 2 cells only because prediction for op- 

ration magnitude is not necessary. Table 4 shows the compari- 

on results. Here, we also apply different M for both controllers. 

he common controller shows better accuracy than the individ- 

al controller. To sum up, the accuracy of each controller can be 

rdered as follows: controller-dependent search ≥ GAN-dependent 

earch using the common controller ≥ GAN-dependent search us- 

ng the individual controller. This also means that the diversity of 

ugmentation operation is crucial when building a mini-batch with 

ugmented samples. Also, using many controllers is not useful for 

mproving the accuracy of a target network. 

.5. Proxy evaluation on CIFAR-100 and Tiny-ImageNet 

In order to show the effectiveness of data augmentation, we 

valuate our GA3N with proxy sets of the CIFAR-100 and Tiny- 

mageNet datasets as shown in Table 5 and 6 . To create the proxy 

raining sets with a different number of training samples, we make 

everal proxy sets consisting of 10%, 20%, and 50% of the whole 

raining samples. To this end, we randomly select images for each 

lass with the same ratios because the number of images for each 

lass in both datasets is the same. But, we maintain the original 

alidation and test sets. Once several proxy training sets are gen- 

rated, we train our GA3N. When training a target network, we fix 

he size of the mini-batch, but change the number of training it- 

rations per epoch in consideration of the size of proxy sets. Then, 

e collect a target loss (i.e. reward) for each augmentation policy 

nd use this for the training of the policy controller. 

As shown in Table 5 , our GA3N achieves comparable ac- 

uracy with 50% samples with other methods [5,7,40] on the 
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Table 4 

Comparison between the common and individual controllers by changing M on CIFAR-100 and Tiny-ImageNet datasets. 

Dataset / Controller CIFAR-100 / Common Controller CIFAR-100 / Individual Controller Tiny-ImageNet / Common Controller Tiny-ImageNet / Individual Controller 

Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 

M = 2 25.3% / 11.3% 25.8% / 13.7% 65.3% / 38.6% 66.2% / 40.3% 

M = 4 22.2% / 9.7% 23.1% / 10.2% 59.7% / 30.2% 59.9% / 32.5% 

M = 8 19.8% / 7.1% 20.4% / 8.8% 54.1% / 27.4% 54.4% / 28.5% 

M = 16 17.3% / 6.8% 17.7% / 7.3% 49.9% / 24.1% 51.2% / 24.6% 

M = 32 18.4% / 8.4% 19.0% / 9.7% 58.7% / 28.2% 59.3% / 29.1% 

Table 5 

Comparisons of data augmentation methods with the different number of policies M and the different ratios of used real training samples on the CIFAR-100 

dataset. This dataset contains 50k training images. We indicate the best scores of our methods and other methods with Bold and italic fonts indicate on each 

proxy sets. 

Sample ratio used for training among whole samples 

Methods Augmentation Number of policies ( M) 10% (5k images) 20% (10k images) 50% (25k images) 100% (50k images) 

Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 

GA3N Generative 2 42.7% / 23.1% 36.0% / 19.7% 29.9% / 13.9% 23.4% / 9.1% 

(proposed) Adversarial 4 39.4% / 22.5% 33.2% / 16.8% 27.3% / 11.2% 20.5% / 7.0% 

AutoAugment 8 33.2% / 19.4% 24.8% / 11.4% 18.7% / 6.4% 15.48% / 4.4% 

16 31.9% / 16.3% 22.4% / 9.9% 18.1% / 6.2% 15.35% / 4.1% 

32 36.4% / 17.4% 29.1% / 11.8% 22.7% / 8.7% 19.5% / 6.7% 

[5] AutoAugment - - / - - / - - / - 17.4% / - 

[7] Adversarial AutoAugment 8 - / - - / - - / - 15.67% / - 

[40] - - - / - - / - - / - 20.43% / - 

Table 6 

Comparisons of data augmentation methods with the different number of policies M and the different ratios of used real training samples on the Tiny- 

ImageNet dataset. This dataset contains 50k training images. We indicate the best scores of our methods and other methods with Bold and Italic fonts 

indicate on each proxy sets. 

Sample ratio used for training among whole samples 

Methods Augmentation Number of policies ( M) 10% (5k images) 20% (10k images) 50% (25k images) 100% (50k images) 

Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 

GA3N Generative 2 76.1% / 56.2% 68.8% / 40.8% 59.1% / 36.9% 60.0% / 38.1% 

(proposed) Adversarial 4 72.5% / 51.6% 66.4% / 37.4% 54.7% / 34.4% 55.7% / 28.7% 

AutoAugment 8 67.2% / 49.3% 58.7% / 34.7% 51.8% / 27.2% 47.6% / 25.5% 

16 64.5% / 46.9% 56.9% / 32.1% 45.5% / 23.2% 45.2% / 23.2% 

32 66.3% / 54.1% 55.5% / 37.9% 49.1% / 28.4% 47.5% / 25.3% 

Vanilla model [39] - - - / - - / - - / - 46.3% / - 

Table 7 

Comparison of GA3N and AutoAugment methods by using different GANs and M on CIFAR-100 dataset. 

Sample ratio used for training among whole samples 

Methods Number of policies ( M) 10% (5k images) 20% (10k images) 50% (25k images) 100% (50k images) 

Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 

GA3N + CGAN M = 16 32.5% / 18.9% 23.1% / 12.0% 18.7% / 7.1% 15.8% / 4.3% 

GA3N + DAGAN M = 16 33.7% / 19.5% 25.3% / 12.1% 20.2% / 7.3% 16.6% / 5.4% 

GA3N + CGAN+DAGAN M = 16 31.9% / 16.3% 22.4% / 9.9% 18.1% / 6.2% 15.35% / 4.1% 

GA3N + CGAN+DAGAN M = 8 33.2% / 19.4% 24.8% / 11.4% 18.7% / 6.4% 15.48% / 4.4% 

AA [7] M = 8 -/- -/- -/- 15.67% / - 

AA Re-Impl [7] M = 8 36.4% / 22.1% 27.6% / 13.2% 19.5% / 8.2% 15.95% / 7.5% 

AA Re-Impl [7] M = 16 38.2% / 24.7% 29.8% / 14.7% 20.6% / 9.8% 17.1% / 8.2% 
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IFAR-10 dataset. Table 6 also shows that we achieve better re- 

ults with 50% samples than [39] . This evaluation proves that 

ur GA3N is an effective data augmentation method. Therefore, 

t is beneficial of training a target model with limited training 

amples. 

To show the effects of the CGAN and DAGAN more, we have 

ompared GA3N with different GANs on each datasets in Table 7 

nd 8 . In this study, GA3N + CGAN indicates the search space ex- 

ension by using Conditional GAN only; GA3N + DAGAN is the ex- 

ension for only DAGAN; and GA3N + CGAN + DAGAN illustrates 

he extension by using both GANs (our proposed). We have also 

eimplemented the adversarial AutoAugment method (i.e. AA Re- 

mpl [7] ) for more comparisons on the proxy dataset. 
9 
As shown in Table 7 and 8 , our GA3N with both GANs shows

he better rates than the reimplemented Adversarial AutoAugment. 

n addition, our GA3N with the one of them shows the compa- 

able results with the Adversarial AutoAugment methods. Using 

he CGAN shows the better result than using the DAGAN. In ad- 

ition, we have provided the results of our GA3N and AA Re-Impl 

or M = 8 and M = 16 . As discussed in [7] , using M ≥ 8 degrades

he accuracy for the AutoAugment. However, our GA3N shows the 

etter results with the higher M. This implicitly means that the 

xtended search space by the integration of CGAN and DAGAN al- 

ows AutoAugment methods to harness higher M since the diver- 

ity of the augmented samples increases further. Remarkably, the 

erformance difference between our GA3N and AA Re-Impl is more 
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Table 8 

Comparison of GA3N and AutoAugment methods by using different GANs and M on Tiny-ImageNet dataset. 

Sample ratio used for training among whole samples 

Methods Number of policies ( M) 10% (5k images) 20% (10k images) 50% (25k images) 100% (50k images) 

Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 

GA3N + CGAN M = 16 64.8% / 47.3% 57.7% / 32.8% 46.2% / 24.1% 45.5% / 23.6% 

GA3N + DAGAN M = 16 65.1% / 49.2% 58.4% / 33.3% 46.8% / 25.2% 45.9% / 24.3% 

GA3N + CGAN+DAGAN M = 16 64.5% / 46.9% 56.9% / 32.1% 45.5% / 23.2% 45.2% / 23.2% 

GA3N + CGAN+DAGAN M = 8 67.2% / 49.3% 58.7% / 34.7% 51.8% / 27.2% 47.6% / 25.5% 

AA Re-Impl [7] M = 8 69.3% / 54.8% 61.7% / 35.5% 57.5% / 31.0% 52.7% / 28.3% 

AA Re-Impl [7] M = 16 72.8% / 58.2% 63.5% / 38.4% 59.5% / 33.3% 54.9% / 30.4% 

Table 9 

Comparison between static augmentation and our AutoAugmentation methods on CIFAR-100 and Tiny-ImageNet datasets. We compare both 

methods with the similar number of augmented samples. 

Dataset Method Number of augmentations D Number of policies M

1 5 10 18 4 

Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 Top1 / Top5 

CIFAR-100 
Static Augmentation 40.4% / 28.6% 37.2% / 25.2% 29.3% / 18.3% 25.6% / 10.5% - / - 

GA3N - / - - / - - / - - / - 20.5% / 7.0% 

Tiny-ImageNet 
Static Augmentation 72.1% / 50.3% 69.2% / 44.7% 57.3% / 35.1% 53.5% / 30.4% - / - 

GA3N - / - - / - - / - - / - 55.7% / 28.7% 
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istinct on the Tiny-ImageNet dataset. Therefore, we confirm that 

ur GA3N is the more effective augmentation method for the large- 

cale tasks. 

.6. Augmentation comparison 

Finally, we make the comparison between static augmentation 

nd our AutoAugment methods. In static augmentation, we ran- 

omly select the D number of augmentation operations from our 

xtended search space. For instance, 18 augmented images are gen- 

rated given a single image when n = 18 . For a more fair com-

arison, we compare the results of this static augmentation with 

ur GA3N using M = 4 2 . As shown in Table 9 , our method can re-

uce the Top1 and Top5 errors on the CIFAR-100 dataset by 5.1% 

nd 2.5%, respectively. Even though the Top1 error on the Tiny- 

mageNet dataset is increased by 2.2% in our GA3N, the Top5 error 

s reduced by 1.7%. Note that we can achieve much better results 

ith large M as shown in Table 6 . This comparison shows that se- 

ecting proper augmentation operations is important in considera- 

ion of the learning status of a target model. 

. Conclusion 

In this work, we propose a generative adversarial auto augment 

etwork (GA3N) for optimal data augmentation on target tasks. 

ur core idea is to generate hard and new synthetic training sam- 

les for improving the robustness and generalization of the target 

etwork. To achieve this, we introduce two adversarial training ap- 

roaches. We train policy and target networks in the adversarial 

raining manner by minimizing and maximizing a target loss. In 

ddition, we integrate two conditional GANs (CGAN and DAGAN) 

or new sample generations which can be considered as unseen 

amples. By combining two GAN operations into traditional image 

anipulation operations, we show that policy search space can be 

xtended. 

From the comparison with recent AutoAugment methods, we 

ave shown that our GA3N can achieve better accuracy on CIFAR- 

00 and Tiny-Image Net datasets. Also, we have evaluated the ef- 

ect of each method with the extensive ablation study. In particu- 
2 The number of augmented images for M = 4 is to 20 because 4 (policies) × 5 

sub-policies) = 20 (augmented images). 

 

10 
ar, from the proxy evaluation, we have shown the significant ef- 

ect of our GA3N. With the half of whole real samples, we have 

chieved comparable accuracy with recent methods. It shows that 

ew augmentation policies for the synthetic image generation can 

lso contribute to boosting the accuracy of the target network. 

herefore, we show that the generative models can be new suit- 

ble operations for auto augmentation. Since our GA3N does not 

epend on the target tasks, we confirm that our GA3N is flexible 

nd it can be applicable for various tasks such as object detection 

nd semantic segmentation. We also believe that our work could 

e one of pioneer works for future auto augmentation methods. 
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