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Deformable Part Region Learning and Feature
Aggregation Tree Representation
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Abstract—Region-based object detection infers object regions
for one or more categories in an image. Due to the recent advances in
deep learning and region proposal methods, object detectors based
on convolutional neural networks (CNNs) have been flourishing
and provided promising detection results. However, the accuracy
of the convolutional object detectors can be degraded often due to
the low feature discriminability caused by geometric variation or
transformation of an object. In this article, we propose a deformable
part region (DPR) learning in order to allow decomposed part
regions to be deformable according to the geometric transforma-
tion of an object. Because the ground truth of the part models
is not available in many cases, we design part model losses for the
detection and segmentation, and learn the geometric parameters by
minimizing an integral loss including those part losses. As a result,
we can train our DPR network without extra supervision, and
make multi-part models deformable according to object geometric
variation. Moreover, we propose a novel feature aggregation tree
(FAT) so as to learn more discriminative region of interest (RoI)
features via bottom-up tree construction. The FAT can learn the
stronger semantic features by aggregating part RoI features along
the bottom-up pathways of the tree. We also present a spatial and
channel attention mechanism for the aggregation between different
node features. Based on the proposed DPR and FAT networks,
we design a new cascade architecture that can refine detection
tasks iteratively. Without bells and whistles, we achieve impressive
detection and segmentation results on MSCOCO and PASCAL
VOC datasets. Our Cascade D-PRD achieves the 57.9 box AP with
the Swin-L backbone. We also provide an extensive ablation study
to prove the effectiveness and usefulness of the proposed methods
for large-scale object detection.

Index Terms—Convolutional object detector, deformable part
model, feature aggregation tree, cascade detection, large scale
object detection, instance segmentation.
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I. INTRODUCTION

OBJECT detection is to find all the instances of one or
more classes of objects given an image. A classical object

detector is usually trained with multi-scale image features and
classifiers, and finds object instances based on the sliding win-
dow search at multi-scale images. Although efficient feature ex-
traction and classification methods [1], [2], [3] were developed,
the complexity of the detectors based on the sliding window
paradigm usually relies on the resolutions of resized images and
the number of pyramid levels.

For efficient object search in an image, some region pro-
posal algorithms based on superpixels [4], [5], [6] and sliding
windows [7], [8] have been proposed to hypothesize object
regions. In addition, several works [9], [10], [11] show the
feature extraction and object classification can be performed by
deep convolutional features from end-to-end learning. There-
fore, great progress in object detection has been also made by
combining the region proposal algorithms and CNN features.
The most notable work is the R-CNN [12] framework. They first
generate object region proposals using the selective search [4],
extract CNN features [13] of the regions, and classify them with
class-specific SVMs. Then, Fast RCNN [14] improves training
and inference speed using feature sharing and RoI pooling.

The recent convolutional detectors [15], [16], [17] integrate
the external region proposal modules into a CNN for boosting
the training and detection speed further. As a result, the detection
accuracy can be also enhanced by joint learning of region pro-
posal and classification modules. The one-stage detectors [17],
[18], [19] slide anchors (or predefined default boxes) on feature
maps for classifying and regressing object features. Since the
most features extracted by sliding anchors are background,
costive-sensitive learning [20], [21] is developed to handle the
class imbalance. On the other hand, two-stage detectors [22],
[23] first find possible object regions using a region proposal
network (RPN) [15], then classify the pooled RoI features in the
next stage. For more accurate detection, the multi-stage detec-
tion methods [24], [25] refine RoI iteratively using a series of
consecutive detection headers. For faster detection, anchor-free
detectors [21], [26], [27] estimate key points corresponding to
object corners and centers directly from image features.

For scale-invariant detection, multi-scale feature representa-
tion which generates a feature pyramid at different scales is used
for object detection. In order to learn stronger semantic feature
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maps, features propagated from a top-down pathway [28],
[29] are fused with bottom-up features by using the lateral
connection. Recently, the feature pyramid representation can be
enhanced by combining features from multiple pathways with
the multi-scale feature fusion [30], [31] and the cross-scale
connection [32], [33]. For improving lower layer feature
representation, path aggregation FPN (PAFPN) [30] adds the
extra bottom-up pathway following the top-down pathway.
NAS-FPN [32] searches for a suitable architecture for feature
pyramid representation by using the Neural Architecture
Search algorithm [34]. AugFPN [35] presents residual feature
augmentation to increase the semantic information of higher
pyramid levels. EfficientDet [33] leverages top-down and
bottom-up feature fusion repeatedly with bi-directional features.

However, these convolutional detectors are still limited to han-
dling the large geometric transformations and variations caused
by object pose, scale, viewpoints, and part deformation. The
main reason is that the most CNNs used for feature extraction
have fixed structures of CNN modules (i.e. convolution, pooling,
and RoI pooling layers) as discussed in [22]. As a result, it is
difficult to detect non-rigid objects and objects with different
scales or poses by using the convolutional detectors. In order
to improve the robustness to the geometric transformation, we
propose a deformable part region network (DPR-Net) that makes
decomposed part models deformable adaptively according to
object scales or poses. We carefully design trainable geometric
parameters of part models to transform them across spatial loca-
tion and scale domains. This is the advance compared to existing
deformable part models [22], [36], [37] that can adjust the spatial
locations of parts. Because the ground truth of the part models is
unavailable in general, we present a weak-supervised learning
by designing a multi-task loss of part models. By minimizing
an integral loss including these part losses, the gradients of the
loss can affect the transformation of part models more directly.
It also makes our DPR-Net can be end-to-end trainable without
extra supervision.

For learning more discriminative features from deformable
part regions, we propose a novel feature aggregation tree (FAT)
network. We design it based on a binary tree model with multiple
region features as leaf nodes and learn the relationship between
feature nodes hierarchically based on the bottom-up feature ag-
gregation. In FAT, we present attention learning and mechanism
(or attention layer) to measure the correlation between different
node features. We compute spatial and channel attention maps
for roof nodes of two sub-trees, and exploit the attention maps
for fusing the most refined features of the trees. As a result, we
can generate strong semantic features at the top levels of the
FAT, and feed these features to detection heads.

In order to refine detection quality progressively, we present
a cascade detector by incorporating the proposed DPR and
FAT networks. Compared to the recent cascade detectors [24],
[25], [38], we replace region proposal and pooling networks
with DPR and FAT networks as shown in Fig. 4. It makes our
detector improve box and mask qualities for whole and part
models more and more at the next cascade stage. As a result,
our cascade scheme achieves more detection gains than recent
cascade ones [24], [25], [39], [40].

To sum up, the main contributions of this article can be sum-
marized as follows: (i) proposition of the deformable part region
network and part model losses for transforming decomposed
object parts and learning the transformation parameters without
extra supervision (ii) proposition of the feature aggregation
tree network for aggregating multiple region features along the
bottom-up pathways (iii) proposition of the attention mechanism
for generating a strong and discriminative semantic feature by
fusing the most refined features of sub-trees. (iv) proposition of
Cascade D-PRD for refining boxes and masks of whole and part
models progressively.

Our single deformable part region detector (D-PRD) achieves
the state-of-the-art results without employing other performance
improvement methods on MSCOCO19. We also make the exten-
sive implementation of D-PRDs with various feature extractors
and provide a thorough ablation study to prove the effectiveness
of the D-PRD. Without bells and whistles, our Cascade D-PRD
achieves impressive 49.9 box and 43.2 mask APs. We have
improved the box and mask APs on average by 4.8 (4.0) and
4.2 (2.9) points compared to the recent Cascade R-CNN [24]
(HTC [25]) with the same backbones. With the Swin-L back-
bone and self-learning [41], we can significantly increase our
detection score to 57.9. Another benefit is that our DPR and
FAT networks can be applied easily to the existing anchor-based
detectors with a simple modification.

II. RELATED WORKS

In this section, we present the previous study which is related
to our work.

A. Object Detection

Due to the progress of deep learning, convolutional object
detectors have flourished for object detection and instance
segmentation. There are two main streams in convolutional
detection. In two-state detectors [14], [15], [23], [42], region
of interests (RoIs) are generated from a RPN [15], and object
classes and regions are then predicted by feeding the RoI features
to the followed R-CNN or its variants. Due to the extra RPN,
these detectors show better accuracy, but lower speed. One-stage
detectors [16], [17], [18], [33], [43] apply anchors for feature
maps, and predict object classes and regions from the extracted
features within anchors.

For reducing the complexity further, anchor-free detec-
tors [21], [26], [27], [44] find top peaks within a key point
heatmap per class, and consider the peaks as center positions of
objects. Then, object regions are determined by regressing them
with predicted offsets of object location and size. In addition,
there are many efforts [28], [30], [31], [32], [33], [45], [46] to
improve multi-scale feature maps based on feature fusion from
different scales and pathways.

On the other hand, multi-stage detectors [24], [25], [38] based
on a cascade architecture have been developed for improving
detection accuracy. These detectors enhance the quality of boxes
or masks by refining the predictions progressively with a series
of detection headers. As one of the pioneer works, Cascade
R-CNN [24] presents a cascade scheme consisting of several
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R-CNN heads, and provides a higher quality of detections to
the next headers. Following the idea, Cas-RectinaNet [38] has
been developed. Hybrid Task Cascade [25] presents an exten-
sion of Cascade R-CNN for improving instance segmentation.
Cascade RPN [47] improves the region proposal quality by
using RPN iteratively. CascadePSP [48] presents a refinement
model for high-resolution image segmentation. In [49], [50],
cascade architectures for human-object interaction recognition
and monocular 3D human pose estimation have been presented.

B. Feature Representation for Detection

Many works [28], [30], [31], [32], [33], [45], [46], [51] tried to
improve image feature maps which are used as inputs of the task
headers (e.g. classification, regression, etc.). Among them, fea-
ture pyramid network (FPN) [28] shows that fusing feature maps
of bottom-up and top-down pathways is beneficial to learn strong
semantic features. After this work, PANet [30] and M2Det [31]
improve the FPN further by adding a new pathway and U-shape
module for multi-scale feature fusion. [32], [33], [52] present
a cross-scale connection for aggregating feature maps at dif-
ferent resolutions. NAS-FPN [32] uses the neural architecture
search for finding a feature network architecture automatically.
EfficientDet [33] combines top-down and bottom-up features
repeatedly with bi-directional features. AFI-GAN [51] presents
a GAN-based interpolation for improving features through a
top-down pathway.

Recently, the attention mechanism has shown an effective way
to weigh and visualize the weighted regions of an image or a
feature map. Inspired by that, many attention methods have been
also presented in order to improve CNN feature representation
further. [53] refines CNN features using spatial and channel
attentions between differently pooled features. CenterMask [54]
and YOLOv4 [55] exploit spatial attention for improving object
detection. The inverted attention method [56] is developed to
discover fine-grain discriminative features. [57], [58] use the
attention mechanism for improving correlated features between
support and query images in few-shot object detection. [59]
presents the pyramid-constrained self-attention network for
salient object detection. DETR [60] applies the transformer-
based encoder and decoder for reasoning the global relations
between an image and the objects. [61] addresses the slow
convergence of training the DETR. UP-DETR [62] provides
unsupervised pre-training with random query patch detection.
The attention-guided distillation [63] resolves the imbalance
learning problem when applying the knowledge distillation for
object detection.

C. Invariant Detection Under Geometric Transformation

Because many recent detectors [14], [15], [17], [23], [33],
[64] are based on CNNs with fixed geometric structures, they
are inherently limited to model geometric transformations. To
improve the robustness over the geometric transformation, [36]
presents a DeepPyramid DPM by combining a ConvNet and
a deformable part model (DPM) [65]. For joint training of the
ConvNet and DPM, [37] designs a loss function by integrat-
ing nonmaximum suppression (NMS) inferences. In addition,

a spatial transformation network (STN) [66] is presented to
learn affine transformation parameters within a CNN for a given
image. To reduce the model capacity of the STN, the inverse
STN [67] propagates warped parameters instead of warped
images. In deformable CNN [22], spatial offsets are augmented
and learned to adjust spatial locations of convolution filtering
and RoI pooling. [68], [69] present anchor learning to generate
different shapes of anchors. Inspired by these recent works, we
present D-PRD in order to accommodate geometric transforma-
tions of decomposed part models. It can also learn regression
parameters of part models from end-to-end learning. Compared
to [22], [36], [37], our D-PRD can adjust spatial sizes as well
as spatial locations of part models. In an attempt to improve
detection and segmentation accuracy more, we design a Cascade
D-PRD architecture for refining detected boxes and masks using
whole and part models based on a series of D-PRD heads.

III. DEFORMABLE PART REGION DETECTOR

For improving the robustness of convolutional detectors over
geometric transformations, we propose a deformable part region
detector, and provide the overall architecture of the D-PRD
in Fig. 1. We introduce a deformable part region network to
transform the spatial locations and sizes of part boxes. To learn
more discriminative features for object detection, we present a
region aggregation tree that combines multi-region features hi-
erarchically. In addition, classification and segmentation losses
for part models are designed to minimize the difference between
the predicted outputs (i.e. class labels and masks) of an aggre-
gated feature from part regions and their ground truth. Since
the aggregated features between part models are affected by
transformed part regions, the deformable part network can be
learned by reducing these losses.

A. Deformable Part Region Network

Let d = (x, y, w, h) be a bounding box, where x, y, w and h
are the center positions, width and height1. Then, smaller decom-
posed part regions{dp = (xp, yp, wp, hp)}kP

p=1 can be generated
by dividing d into several kP rectangular regions as shown in
Fig. 2. For instance, for kP = 4 the smaller decomposed part
regions from {dp}4p=1 can be left, right, upper, and bottom part
boxes as shown in Fig. 2.

Given a feature map of size H ×W , we apply kA anchors
(or reference boxes) per location. We consider each anchor
box as a possible objectness region. Then, each anchor box
d = (x, y, w, h) can be decomposed intokP part regions. There-
fore, there exist HWkA possible object regions and HWkAkP
part regions in total. We assume that the assigned kP part boxes
to an anchor box are also removed when the anchor is removed
by the NMS or score thresholding. This assumption avoids
the unnecessary training for predicting classification scores (or
objectness score) per part box, and improves detection speed. In
addition, we assume that each part box can be transformed inde-
pendently. In this case, we need kR = 4 parameters to transform

1We generate each object bounding box by using the region proposal network
(RPN) as shown in Fig. 3. However, other bounding box generation methods
can be combined with DPR.
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Fig. 1. Proposed deformable part region detector (D-PRD): we use FPN as a feature extractor. In the DPR-Net, kP part boxes for each proposal are transformed
by the the part model transformation layer. Here, ∗ means convolution, and Cls, regression, and part model transformation layers are designed by 1 × 1 conv. In
FAT-Net, we first learn strong semantic features x1

L−1 and x1
L by aggregating different region features with the bottom-up aggregation, and feed both features to

classification (C), box (B), mask (M), MaskIoU (I) heads.

Fig. 2. Decomposed part regions dp with different kP .

four coordinates (xp, yp, wp, hp) of a part box. Therefore, the
part model transformation layer has kA × kR × kP channels
in order to transform kR coordinates of kA × kP part boxes
centered at each pixel of the Conv Map of the size H ×W .

As shown in Fig. 3, we first predict the offsets {Δxp,
Δyp,Δwp,Δhp} to transform each part box by convolving
the feature Conv Map with the part model transformation layer.
The part box transformation is then achieved by applying off-
sets {Δxp,Δyp,Δwp,Δhp} for coordinates (xp, yp, wp, hp)
of each part box using the inverse parameterization of the box
regression [12] as follows:

x̂p = xp +Δxp · wp, ŷp = yp +Δyp · hp,

ŵp = exp(Δwp) · wp, ĥp = exp(Δhp) · hp, (1)

where d̂p = (x̂p, ŷp, ŵp, ĥp) is a transformed box for p-th part.
Therefore, the locations and sizes of the part boxes assigned
to all remaining anchor boxes can be transformed after this
transformation. We clip the part boxes to image boundaries to
place them within the boundaries. Also, when the transformed
d̂p has a low overlap ratio over its original dp, we replace d̂p

with dp. This prevents a transformed part box to be out of an
object region too much. (We provide the experimental results in
Fig. 5).

Fig. 3. Deformable part region generation: when applying kA anchors for a
feature map of a size H ×W , HWkA proposals are generated. Each proposal
consists of kP boxes with kR coordinates. We learn kP × kR transformation
parameters in the part box transformation layer, and transform each part box by
applying the predicted outputs in the part box generation layer.

B. Feature Aggregation Tree

Given object d and transformed part dp region proposals
from the DPR-Net, a region aggregation tree network T learns
stronger semantic features by aggregating the region features
hierarchically in a bottom-up fashion. As an input of T , we
can extract a warped feature xw for d at the corresponding
scale (or pyramid) level of multi-scale pyramid features (e.g.
FPN [28], PANet [30], and BiFPN [33]) in consideration of
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their box sizes. Similarly, we can extract warped part feature
maps {xp

0}kP
p=1 of the same size for each part box{dp}kP

p=1. For
the RoI feature extraction for whole object and its parts, we use
the RoIAlign [23]. We consider T as a binary tree of the level
(or depth) L2 consisting of a left Tl and right Tr subtrees. Tl
is assumed to be a perfect binary tree of the level L− 1 where
nodes are full per level. On the other hand, Tr has one node xw

only.
Given kP = 2L−1 part RoI features (since Tl is a perfect

binary tree), we first construct Tl by fusing leaf nodes from left
to right at l = 0 to generate their parent nodes at next level. To
this end, we define a fusion block G. The fusion block G uses an
attention mechanism by correlating different region features as
described in Section III-C. Then, a parent node xp

l with stronger
semantic features can be generated by merging features of its
two children as:

xp
l = G

(
x2p−1
l−1 ,x2p

l−1

)
, l ≥ 1 and 1 ≤ p ≤ 2L−l (2)

The blockG is shared across levels in T . From the the bottom-
up aggregation for L− 1 phases, we can construct Tl rooted at
x1
L−1. Sequentially, we can build T with a root x1

L by merging
Tl and Tr. This can also be achieved by merging x1

L−1 and xw.
Note that the depth L of T is log kP + 1 since the depth of Tl is
log kP . Here, the one is added due to the last fusion between Tl
and Tr. We then feed these learned strongest semantic features
for object detection.

There are obvious benefits for connecting between Tl and
Tr. For scale-invariant detection, exploiting a feature at a cer-
tain level only is not sufficient as mentioned in FPN [28] and
BiFPN [33]. Tl contains stronger saliency, whereas Tr preserves
more locality. In this sense, we can learn more discriminative
features by fusing Tl and Tr with different aggregation levels.
To reduce the semantic gap between them, we however use G. In
addition, the skip connection along Tr pathway would mitigate
the gradient vanishing.

C. Attention Learning for FAT

In this section, we elaborate on our attention-based feature
aggregation G in order to learn the correlation between features
of different child nodes and generate their parent node feature.
We assume that the dimensions of the feature tensors x2p−1

l−1 and
x2p
l−1 at l − 1 level are the same each other as (cp × hp × wp),

where cp, hp, wp are the number of channels, height, and width
of the RoI feature map after the pooling.

We can reshape the dimension x2p−1
l−1 and x2p

l−1 from
Rcp×hp×wp to Rcp×hpwp . Then, we evaluate the normalized
channel correlation between child features through their mul-
tiplication:

Wc = S

(
x2p−1
l−1 ⊗

(
x2p
l−1

)T
)

∈ [0, 1]C×C , (3)

where ⊗ denotes matrix multiplication. We apply the softmax
function S(·) along the last dimension.

In order to learn the spatial attention, we also reshape the
x2p−1
l−1 and and x2p

l−1 to make the dimension as Rhpwp×cp .

2We denote l = 0 as a leaf level due to the bottom-up aggregation.

Similarity, we compute the normalized spatial correlation as

Ws = S

(
x2p−1
l−1 ⊗

(
x2p
l−1

)T
)

∈ [0, 1]hpwp×hpwp (4)

Next, the channel and spatial attention summaries forx2p
l−1 are

computed as x2p
l−1 ⊗Wc and x2p

l−1 ⊗Ws, and then we compute
the parent node feature xp

l with the attention features as

xp
l = G

(
x2p−1
l−1 ,x2p

l−1

)

= x2p−1
l−1 + x2p

l−1 ⊗Ws + x2p
l−1 ⊗Wc (5)

Thusxp
l encodes the spatial and channel relation of its children

with enhanced representation. Also, it is possible to use the
attention summary of its sibling x2p−1

l−1 ⊗Ws and x2p−1
l−1 ⊗Wc.

In addition, for training FAT we maximize the mutual infor-
mation between the regions feature of children nodes. We can
represent the mutual information between x2p−1

l−1 and x2p
l−1 as

I
(
x2p−1
l−1 ,x2p

l−1

)

=

∫ ∫
p
(
x2p−1
l−1 ,x2p

l−1

)
log

p
(
x2p−1
l−1 ,x2p

l−1

)

p
(
x2p−1
l−1

)
p
(
x2p
l−1

)dx2p−1
l−1 dx2p

l−1

= DKL

(
P(x2p−1

l−1 ,x2p
l−1)

||Px2p−1
l−1

⊗ Px2p
l−1

)
(6)

The mutual information can capture nonlinear statistical
dependencies and is zero if and only if both features are
mutually independent. The mutual information is equivalent
to the Kullback-Leibler (KL-) divergence between the joint
P(x2p−1

l−1 ,x2p
l−1)

and the product of the marginals Px2p−1
l−1

⊗ Px2p
l−1

.
Because optimizing (6) is challenging, we exploit the dual
representation of the KL-divergence [70] as follows:

DKL (J ||M) = sup
T :Rd→R

EJ [T ]− log
(
EM [eT ]

)
(7)

For simplicity, we denote J and M as the joint P(x2p−1
l−1 ,x2p

l−1)
and

marginals Px2p−1
l−1

⊗ Px2p
l−1

. The supremum can be taken over any
class of functions T such that the two expectations are finite.
In general, Tω(x2p−1

l−1 ,x2p
l−1) ∈ R can be modeled by a neural

network with parameter ω. The expectation is evaluated using
empirical samples from J and M or by shuffling the samples
from the joint distribution along the batch axis. At the level of
the FAT, we maximize the mutual information with respect to
the parameters of the attention aggregation G and T as:

I
(
x2p−1
l−1 ,x2p

l−1

)
≥

EJ

[
Tω(x

2p−1
l−1 ,x2p

l−1)
]
− log

(
EM

[
eTω(x2p−1

l−1 ,x2p
l−1)

])
(8)

We maximize the I for all feature nodes when l ≥ 1. There-
fore, the total mutual information of FAT can be represented as:

argmax
ω,Ws,Wc

IFAT (T ) =
L∑

l=1

2L−l∑
p=1

I
(
x2p−1
l−1 ,x2p

l−1

)
(9)

Since we aim at maximizing the mutual information in-
stead of estimating the exact value, we can reformulate (8)
into formulations of non-KL divergences. We can exploit the
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f-divergences [71] which can measure the differences of two
probability distributions. In addition, Noise-Contrastive estima-
tions [72] (or InfoNCE) can be used to maximize the lower
bound on mutual information. In Table V, we compare the
detection performance by applying the different divergences or
InfoNCE.

D. Detection Heads

We feed the aggregated discriminative features x1
L−1 and x1

L

from the FAT network to each head as shown in Fig. 1. To reduce
the memory burden, all the detection heads are shared when
predicting outputs for the given inputsx1

L−1 andx1
L. The outputs

extracted from the part features are used for training only. Here,
x1
L−1 is a refined feature by aggregating part features only during

L− 1 phases, but x1
L is refined by fusing x1

L−1 and xw of the
whole object model.

The box head includes two fully connected (FC) layers with
1024 neurons. The last FC layer is connected to the classification
and box regression layers with cls+ 1 neurons and 4× cls
neurons, where cls is the number of object classes and the
one is added due to the background class. We use x1

L−1 for
classification only.

For instance segmentation, we also propagate the outputs
x1
L−1 and x1

L of the FAT to the mask head. Since pixel-wise
labeling is required, a stack of fully convolutional networks
(FCNs) [73] is usually used as the mask head due to its flexibility,
robustness, and fast speed of training and inference. We follow
the implementation of [23] for the mask head. It has a stack of
four consecutive 3× 3 convs, a 2× 2 deconv layer with stride
2 for up-sampling the spatial resolution of the inputs by a factor
of 2. Then, 1× 1 conv is followed to produce cls masks. We
use ReLU in the hidden layers. Also, cls masks from the input
x1
L−1 are extracted by using the same mask head.
In addition, we attach a MaskIoU head after the mask head

because it can evaluate the confidence of each mask more accu-
rately by calculating the pixel-level IoU between the predicted
mask and the counterpart ground truth. Following the implemen-
tation of [42], the input RoI feature and output mask of the mask
head are concatenated along the channel dimension, and then the
4 convolutional and 2 fully connected layers are followed to pre-
dict the MaskIoU score per class from the concatenated feature.

E. Training

Because we should localize object part regions without the
ground truth of object parts, it can be considered as a weakly
supervised learning problem. To handle this problem, we define
object parts with four rectangle boxes by decomposing a RoI
region. We then use them as reference part boxes. In other
words, spatial locations and scales of part boxes are transformed
relative to their reference boxes. In return, these decomposed
boxes provide good starting points when solving the complex
weak-supervision problem.

To learn the transformation parameters of part boxes, we
cannot apply the conventional box regression loss [12] directly,
which minimizes a mismatch between the ground truth and pre-
dicted boxes, because the ground truth of part regions is unavail-
able. However, the features extracted from the part boxes still

contribute to object classification and segmentation. Therefore,
we can solve the weak-supervision problem by minimizing the
box classification and mask segmentation losses w.r.t. d̂p. We
first match each boxd and the ground truth boxd∗ by evaluating
IoU, and assign d to a positive label o∗ ∈ {1, . . ., cls} if d
has an IoU more than 0.5 over any d∗. We assign a negative
label (o∗ = 0) to d that has an IoU between 0.1 and 0.5.
Let p = (p0, . . ., pcls) and pprt = (pprt,0, . . ., pprt,cls) denote
probability distributions over cls+ 1 which are computed by
feeding x1

L−1 and x1
L from the FAT network T to the box head

and applying the softmax for the outputs of the head. Then,
we define classification losses of the deformable part and whole
modelsLprt

cls (p
prt, o∗) andLcls(p, o

∗), and these losses evaluate
the difference between the prediction of class probabilities and
ground truth labels using the cross entropy loss.

In addition, we add mask losses Lmask(m,m∗) and
Lprt
mask(m

prt,m∗) for the multi-task loss. These compare m
and mprt with the ground truth mask m∗. Here, mprt and m
are the outputs of the shared mask head for the inputs x1

L−1 and
x1
L, respectively. To evaluate MaskIoU losses Lmiou for part

and whole models, we compute the MaskIoU between a binary
mask and its counterpart ground truth, and then consider it as
the MaskIoU target s∗. We compute the L2 losses to regress
predicted MaskIoUs from whole s and part sprt models over
the MaskIoU target. As a result, we present a new integral total
loss by combining all the losses with whole and part models as
follows:

LDPR

(
p,pprt, o∗, t, t∗,m,mprt,m∗, s, sprt, s∗

)
= Lcls(p, o

∗) + λ [o ≥ 1]Lreg(t, t
∗) + Lmask(m,m∗)

+ Lmiou(s, s
∗) + Lprt

cls (p
prt, o∗)

+ Lprt
mask(m

prt,m∗) + Lprt
miou(s

prt, s∗) (10)

Lmask and Lprt
mask are the mask losses defined with the av-

erage binary cross entropy. The mask head produces m =
{m1, . . .,mcls} and mprt = {mprt,1, . . .,mprt,cls} of resolu-
tion hmask

roi × wmask
roi over cls classes. When evaluating Lmask

and Lprt
mask, a mask predicted from an RoI associated with o∗ is

compared with ground truth mask m∗ only. The MaskIoU head
also produces s = (s0, . . ., scls) and sprt = (sprt,0, . . ., sprt,cls)
over cls classes. pprt,u is a predicted class probability for class
u. For Lreg , we evaluate box regression targets t and t∗ by
comparing predicted box d with its anchor and ground truth
boxes for class o∗. To refine mask scores, the predicted MaskIoU
scores are multiplied by the classification scores for the same
class masks. λ = 1 in our implementation. Finally, we can train
all the parameters of the DPR (D) and FAT (F) networks by
maximizing (9) and minimizing (10).

F. Discussion of DPR and FAT Networks

In order to improve object feature discriminability, the obvi-
ous way is to learn the global context around an object and local
details within the object. However, the main challenge is to find
meaningful regions to learn these contexts. The meaningful re-
gion could be a larger region including other interacting objects
or background, or a smaller region containing object crucial parts
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for the local context. To learn the global context, [46], [68], [74]
fuse the holistic image and object RoI features. However, these
methods would often miss the object part details after the global
feature fusion. On the other hand, [37], [75], [76] can learn
the local context, but learning the global context is challenging
since their part models are fixed or limited deformablity within
the object. Compared to those works, our DPM can learn both
contexts because of its high deformability of part models within
or around an object. Remarkably, the deformability is tuned for
each object class and size during the multi-task learning (10)
without any labels of part boxes (c.f. [75], [76]).

Moreover, there are also several benefits of the proposed
feature aggregation tree method. We can consider the FAT
as a network of extracting the strongest semantic or saliency
features across spatial and channel dimensions between feature
maps of object parts. We can improve the feature invariance
against geometric object pose and part configuration variations
because we learn the stronger feature responses and feed them
to the following object detection heads. Moreover, the FAT is
the generalized method of RDA-Net [77] which merges four
part features. However, the arbitrary kP parts (in the form of
power of 2) can be merged by using FAT. Also, the weighted
feature aggregation using our attention mechanism leads to more
informative and softened features rather than learning maxout
features [77]. For the attention learning, other methods learn
the feature correlation between whole feature map [53], [57] or
object RoI [54], [55] levels. However, our FAT can learn the
more detailed self-correlation of an object because the smaller
part features are correlated each other and then the last refined
part feature (x1

L−1) is correlated with the whole object feature
(xw).

IV. CASCADE DEFORMABLE PART REGION DETECTOR

In general, cascade object detection refines detections for N
stages by feeding the results at previous stage to the input at next
stage. For improving this multi-stage detection, we exploit the
proposed DPR-Net (D) and FAT-Net (T ) described in Section II-
I-A and B. We also attach several detection heads to T described
in Section III-D. Now, we formulate our cascade object detection
scheme per n(≥1) stage.3 When the stage n = 1, we refine all
the object d0 and part {dp

0}kP
p=1 boxes from the DPR-Net (D).

Otherwise, the refined bounding boxes dn−1 and {dp
n−1}kP

p=1

from the previous stage are handled. At each stagen, we first feed
dn−1 and {dp

n−1}kP
p=1 to the treeT in order to extract aggregation

features for the whole objectxb
n,L and the combined partxb

n,L−1

boxes: (
xb
n,L−1,x

b
n,L

)
= T

(
dn−1,

{
dp
n−1

}kP

p=1

)
(11)

Subsequently, we feed the aggregation features xb
n,L−1 and

xb
n,L to the box regression B and classification C layers:

pn = Cn(xb
n,L), pprt

n = Cn(xb
n,L−1)

dn = Bn(x
b
n,L), {dp

n}kP

p=1 = D (dn) (12)

3For simplicity, we omit a node index 1 for the root features of T .

From the classification layers, the classification probabilities
pn and pprt

n for object and part models are predicted. In the
DPR-Net D, we simply generate part boxes by dividing the
input refined boxes dn into kP parts without the additional box
transformation. We then provide dn and {dp

n}kP
p=1 to the same

FAT T in order to extract their refined mask features xm
n,L−1 and

xm
n,L:

(
xm
n,L−1,x

m
n,L

)
= T

(
dn, {dp

n}kP

p=1

)
(13)

Finally, masks mn (mprt
n ) and MaskIoU scores sn (sprtn ) for

objects (and their parts) are predicted with the mask (M) and
MaskIoU (U ) heads:

mn = Mn

(
xm
n,L

)
, mprt

n = Mn

(
xm
n,L−1

)
sn = In(xm

n,L), sprtn = In(xm
n,L−1) (14)

In our implementation, we use the same T when extracting
boxxb

n,L and maskxm
n,L aggregation features. Also, theCn,Mn,

and In are shared at the same stage when inferring object and
part model results. However, these heads are not shared across
the cascade stage.

Fig. 4 compares our architecture with Cascade R-CNN [24]
and Hybrid Task Cascade (HTC) [25]. From the viewpoint of
system architecture design, the main differences come from
integrating our DPR-Net and FAT-Net into the cascade scheme.
Note that the DPR-Net and FAT include the RPN and pooling
layer, respectively, as shown in Fig. 1. Therefore, our DPR-Net
can replace the existing RPN, and generate deformable part
boxes as well as whole object boxes.

For the aspect of feature learning, the pooled object RoI
features are convolved and then fed to the detection heads in
Cascade R-CNN and Hybrid Task Cascade (HTC). On the other
hand, in our FAT, the part RoI features as well as object RoI
features are extracted and their correlations are learned from the
attention mechanism. By providing the attention features to
the detection heads at the stage, our Cascade D-PRD achieves
the better box AP scores than [24], [25] as shown in Tables VII
and X. The overall procedure of the mask predictions at each
stage follows the Cascade R-CNN. Therefore, the improved
segmentation methods (e.g. interleaved execution and mask
information flow) of HTC are not applied in our detector. Nev-
ertheless, our Cascade D-PRD also outperforms HTC for mask
AP. This shows the effects of the mask attention features mn

and mprt
n aggregated by FAT.

For training our cascade D-PRD, we extend the multi-task
loss (10) to N cascade stages as

L =
N∑

n=1

λnL
n
DPR (15)

We set λn = 1, and N = 3 by default as same to [24], [25].
We set the IoU threshold to (0.5, 0.6, 0.7) for box regression
at n = (1, 2, 3), and encourage the next box and mask heads to
produce higher quality results.
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Fig. 4. Comparison of different cascade architectures. In (c), features from transformed part regions of DPR are aggregated per stage n by Tn, and are used for
several detection tasks.

We can also extend the total mutual information gain to N
stages as

I =

N∑
n=1

λnIn
FAT (Tn) =

N∑
n=1

L∑
l=1

2L−l∑
p=1

I
(
x2p−1
n,l−1,x

2p
n,l−1

)
(16)

For training our cascade D-PRD, the min-max optimization is
performed for (15) and (16).

The part detection results (i.e. pprt
n , mprt

n , and sprtn ) from
the several different heads are used only for evaluating loss
(10) and (15). It means that the process of predicting the part
detection results is not required in the inference phase. Never-
theless, part detection results {dp

n}kP
p=1 can still contribute to the

overall detection since they are used to generate the aggregated
attention feature xb

n,L and xm
n,L which are inputs of detection

and segmentation heads.

V. EXPERIMENTAL RESULTS

Our D-PRD and Cascade D-PRD are evaluated on
MSCOCO17 [78] and PASCAL VOC07/12 [79] datasets. To
show the effects of proposed methods, we present the ablation
study. Then, comparison results with recent detectors are pro-
vided on the benchmark datasets.

A. Implementation

We implement our D-PRD and Cascade D-PRD based on the
feature pyramid network (FPN) [28] since it has been widely
used as a multi-scale feature extractor for detection and seg-
mentation. We use ResNet50-FPN (R50-FPN), ResNet101-FPN
(R101-FPN) [11], ResNeXt101-32x8d (X101-FPN) [80]. Once
collecting feature maps {P2, P3, P4, P5, P6} of FPN, we dis-
tribute them to the DPR and FAT networks. For the DPR network,
we use all the feature levels {P2, . . ., P6}, but {P2, . . ., P5} for
the FAT network. As described in [28], we set anchor sizes
to {322, 642, 1282, 2562, 5122} on {P2, . . ., P6}, respectively.

Also, we apply multiple anchor ratios {1 : 2, 1 : 1, 2 : 1} for
each anchor. Therefore, total 15 anchors are used over the
pyramid.

For RoI pooling, we assign an RoI of width w and height h
(on the input image) to the corresponding pyramid level as de-
scribed in [11]. Using the RoIAlign [23], we then extract warped
features for whole object and part RoIs at the corresponding
level. As shown in Fig. 1, we set the sizes of warped features to
7× 7 and 14× 14 for detection and segmentation, respectively.
We emphasize again that the parameters of the DPR and FAT
networks are shared across all pyramid levels and all RoIs of all
levels. We implement all the detectors using the Detectron2 [81].
We train our detectors using multi-scale training with the short
edge in the range [640, 800] and the long edge up to 1333 which
is the default setting for the FPN-based detector implementation
provided by Detectron2.

We set the size of the image batch to 16 for training. Since
we use 8 GPUs, we assign 2 images to each GPU. For training
Cascade D-PRD, we increase the positive IoU threshold by [0.5,
0.6, 0.7] at each cascade stage. We use the group normalization
for normalizing convolution layers. We set the batch size of RoI
proposals per image to 512 followed by the default setting of
Dectectron2. We set the number of RPN proposals to 1000. We
set the channel dimension of the box and mask, and MaskIoU
heads to 256. We use 1-MLP and 2-MLPs for the box and
MaskIoU heads. We set the pixel standard deviation for R50/101
and X101 backbones to [1.0, 1.0, 1.0] and [57.375, 57.120,
58.395], respectively.

B. Evaluation setting

1) Evaluation Measure: We use the standard COCO-style
metrics. For the detected boxes and instance masks, we evaluate
IoU scores between predicted results and ground truth results.
Then, we evaluate average precision at IoU ∈ [0.5 : 0.05 : 0.95]
(box/mask AP ), at IoU 0.5 (AP50), at IoU 0.75 (AP75), and
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TABLE I
ABLATION STUDY: EFFECTS OF THE PROPOSED DPR, FAT, AND CASCADE

METHODS ON THE COCO2017 VAL SET. BASED ON OUR RE-IMPLEMENTED

MASK SCORING R-CNN [42], WE GRADUALLY ADD THE DPR AND FAT
NETWORKS, AND CASCADE SCHEME (CASCADE). WE USE THE 3× COCO

TRAINING SCHEDULE. HERE, FIXED MEANS THAT DECOMPOSED PART

METHODS ARE NOT DEFORMABLE

average precision on small (APS), medium (APM ), large ob-
jects (APL). When evaluating the metric scores, we use the
publicly available code [78] or evaluation servers for those com-
petitions. All the metrics indicate that higher scores are better
performance. For each task, box AP and mask AP scores are
considered as the most important metrics.

2) Learning Strategy: We use the default learning schedules
1× or 3× (∼12 or ∼37 COCO epochs) of Detectron2 for all the
evaluation below. Also, all other setting parameters for training
and testing are same to those of Detectron2.

C. Ablation Experiments

To prove our methods, we provide some ablation studies. We
train and evaluate detectors on the COCO dataset.

1) Effects of Each Method: We implement our baseline de-
tector (Mask Scoring R-CNN [42]) to R50-FPN and R101-FPN
backbones as described in Section III-D. Then, we add the
proposed method step-by-step to the baseline. Table I shows
the scores of box AP and mask AP after applying each method.
For R50-FPN, our DPR-Net improves box and mask APs by 1.3
and 0.5 points over the baseline detector. We improve box and
mask APs by 2.6 and 2.4 by using FAT networks. Furthermore,
the Cascade D-PRD can improve box and mask APs by 3.4
and 1.1 for box and maks APs. For R101-FPN, we can improve
box/mask APs 1.4/0.4 points by using DPR-Net, and 2.9/1.9
points by adding FAT-Net. In addition, our cascade scheme
boosts the APs considerably about 2.2/0.8 points.

Remarkably, compared to each baseline detector with R50-
FPN(R101-FPN), we boost box and mask APs by about 7.4(6.5)
and 4.1(3.1) points by using all the proposed methods (i.e. DPR,
FAT, and Cascade methods). When using DPR and FAT networks
only, we improve box and mask APs by about 3.9/2.9 (4.3/2.3)
for R50-PFN (R101-FPN). However, the fixed part models (i.e.
not deformable) degrades mAP as shown.4 We prove that each
method indeed contributes significantly to improve mAPs for
detection and instance segmentation.

2) Detailed Analysis of DPR and FAT: Table II shows more
ablation study of the main methods. For more comparison with

4More experimental results of part deformablity can be found in Section V-C3.

TABLE II
FOR INFERENCE, COMPARISONS OF DETECTORS WITH R50-FPN TRAINED

DURING THE 1× EPOCH ON COCO. WE HAVE IMPLEMENTED DIFFERENT

VARIANTS OF D-PRD (D1-D5) WITH DIFFERENT PART MODELS AND FEATURE

FUSION METHODS

our FAT, we implement a feature fusion method (i.e. Concat). We
first apply a 1 × 1 conv to reduce the channel number of xp

0 by
1/kP , and concatenate them along the channel dimension. Then,
we combine the whole xw and concatenated part feature using
one element-wise max unit over each channel. Here, (D1) does
use the Concat method which is the simple feature fusion above
mentioned, and its parts are fixed. (D2) uses our FAT but its parts
are not deformable. (D3) uses DPR and Concat methods. (D4)
is the extension of (D3). It has the additional four consecutive
convolution layers with the kernel size of 3 after box and mask
RoI pooling. Then, convolved RoI features are merged by the
Concat method. (D5) uses the DPR and FAT methods. We also
present the performance of the DPM method [22]. Compared
to (D1), (D2) and (D3) improve box /mask APs by 2.1/2.3 and
3.0/3.0. These results show the effects of our deformable part
model and feature aggregation method. Note that the proposed
(D4) achieves box 4.3 and mask 4.5 AP gains compared to (D1).
Compared to (D4) adding more convolution layers to (D3), (D5)
still shows the better results. In particular, adding more Conv
layers can improve AP scores, but increases detector parameters
and Flops. As a result, the speed is greatly reduced. However,
the cost of using our DPR and FAT networks is not much in term
of parameters and complexity as shown.

3) Amount of Part Deformation: As discussed in Section II-
I-A, when the IoU score between a transformed part d̂p and
fixed part dp is lower than σ, we exploit dp instead of d̂p to
avoid the over-deformablity of part models. To find out the
best σ, we implement several Cascade D-PRD with different
R50/R101/X101-FPN backbones, and evaluate box and mask
APs by varying σ. When σ = 1, this indicates the decomposed
part models are fixed as shown in Fig. 2. It is possible that d̂p is
non-overlapped with d when σ = 0. Thus, the lower σ allows
the part models to be deformable more.

Fig. 5 shows the mAP comparison results of different Cascade
R-DADs with different backbones. For the box AP, all the
detectors show the best results using σ = 0.5, but each achieves
the best mask using σ = [0.3, 0.4, 0.5], respectively. Note that
the maximum differences of box and mask APs forσ = [0.3, 0.7]
is less than 0.28. Thus, these marginal differences prove that our
detector is not sensitive to σ. Compared to results of using the
fixed part models, we can improve box and mask AP by about
1.2 and 0.9 points by deforming part boxes in average. This also
highlights that the deformable part region method is key.

4) Number of Part Models: In Table III, we evaluate APs and
speed by applying the different number of parts and tree levels for
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Fig. 5. Comparison of the Cascade D-PRD with different backbones by
changing σ. Here, σ represents an IoU score between fixed dp and transformed
d̂p part boxes within the same RoI box. Here, B and M means box and mask
AP scores.

TABLE III
EVALUATION WITH THE DIFFERENT NUMBER OF PARTS IN D-PRD

TABLE IV
COMPARISONS OF CASCADE D-PRD STRUCTURES

FAT. Decreasing kP boosts the speed, but degrades AP scores.
We also evaluate our D-PRD with more parts (kP = {8, 16})
and stages (L = {4, 5}). The accuracy gain is marginal, but the
speed is reduced largely. Thus, we opt kP = 4 and L = 3 for
our implementation.

5) Structure of Cascade D-PRD: To determine the best struc-
ture of the Cascade D-PRD, we change the network head of
each stage with FAT or Conv networks. We implement the Conv
network by feeding RoI features to four 3 × 3 conv layers with
ReLU (without using the DPR-Net). We then train them with
the 1× schedule. We compare detection results in Table IV.
Using FAT networks at all the stages can improve AP scores, but
increases the run-time in return. In consideration of the trade-off,
we consider FAT-Conv-FAT as a default scheme of our cascade
D-PRD.

6) Mutual Information: For investigating the effect of the
mutual information functions used for training the FAT (9),
we implement the different mutual information functions based
on the f-divergences [71], [82] and InfoNCE [72]. In Table V,
we first compare our detectors with fixed part models to show
the effects of each function more clearly. We then report the
detection scores using deformable part models in the last row. In
addition, we provide the detection results of the baseline detector
which is described in Section V-C1. We compare the detectors
trained for 3× COCO training schedules.

All the detectors trained with the mutual information show
better box and mask scores over the baseline. In particular,
the JSD-RKL and GAN functions provide the more gains than
others. However, the performance differences for different func-
tions are marginal. Since the JSD-RKL provides the best results
in terms of both AP metrics, we use this function for training our

TABLE V
COMPARISON WITH DIFFERENT MUTUAL INFORMATION FUNCTIONS. WE

EVALUATE THE BOX AND MASK APS FOR OUR DETECTORS WHEN APPLYING

EACH MUTUAL INFORMATION FUNCTION ON THE COCO2017 VAL SET

TABLE VI
COMPARISON WITH OTHER PART MODEL-BASED DETECTORS. HERE, †
INDICATES OUR RE-IMPLEMENTATION RESULTS USING DETECTRON2

detectors unless otherwise mentioned in other sections. We also
confirm that leveraging the DPR-Net also boosts the detection
scores further. Specifically, it improves box and mask APs by
2.92 and 3.81 points when comparing detectors with/without the
DPR-Net by using the same JSD-RKL loss.

D. Comparison With Part Model Detectors

Table VI shows the comparison of different part model-based
detectors on COCO test-dev and VOC test sets. Compared to
Deformable R-FCN [22] and R-DAD [77], our D-PRD can
improve AP scores significantly. In Table II, we also provide
# params and speed of [22]. Our D-PRD overwhelms [12] for
accuracy and speed. For a more fair comparison, we have re-
implemented R-DAD and its cascade version. When comparing
our detectors with the re-implemented ones, we can improve
box and mask APs by 4.72 and 3.22 points for the non-cascade
detection and 4.09 and 3.43 for the cascade detection. These
results also demonstrate the effects of our deformable part model
and feature aggregation methods.

Moreover, we provide comparisons with other part-based
detectors on the PASCAL VOC test set. As shown, our detectors
are the much better detection scores than DP-DPM [36] and
CONV-DPM [37] which are designed based on the pioneer
work [65] of the deformable part detection.

E. Comparison With Cascade Detectors

Our Cascade D-PRDs with different backbones are compared
with the Cascade Mask R-CNN and Hybrid Task Cascade (HTC)
for detection and segmentation on the COCO2019 test-dev set.
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TABLE VII
COMPARISON OF DIFFERENT CASCADE DETECTORS ON THE COCO2019 TEST-DEV DATASETS

Fig. 6. Gradient activations of the Cascade Mask R-CNN [24] (left) and Cascade D-PRD (right) with R50-FPN are compared.

The Cascade Mask R-CNN [24] also means that the mask head
is added on the Cascade R-CNN. In addition, HTC [25] further
enhances this Cascade architecture for improving segmentation
results.

In Table VII, we compare the accuracy and speed of different
Cascade detectors. For mask AP, we report AP50, AP75, APS ,
APM , and APL. For the same backbone, our detectors show
the better box and mask AP scores. Compared to Cascade Mask
R-CNN, our detector improves 4.8 and 4.2 points in average
for box and mask APs. In addition, our detector achieves 4.0
box and 2.9 mask AP gains in average over HTC. For the
speed, our detectors are faster about 21.5% and 34.6% over
the cascade Mask R-CNN and HTC. Remarkably, the average
precision differences between ours and other cascade detectors
become larger for more difficult metrics (i.e. AP75 and APS).
In specific, the score differences between Cascade D-PRD and
Cascade Mask R-CNN (HTC) for AP50 and APL metrics are
about 4.3 (2.9 for HTC) and 3.9 (1.5 for HTC)5. On the other
hands, the score differences for AP75 and APS are 5.2 (3.6 for
HTC) and 4.8 (4.0 for HTC). The main structural differences
between the cascade detectors are to leverage deformable part
models for object detection as shown in Fig. 4. Therefore, we
verify that our deformable part model and feature aggregation
method are also beneficial for improving cascade detection. In
particular, our deformable part-based cascade detection is more
attractive for small object detection and higher-quality detection.

Fig. 6 compares the gradient activation maps. We use the
Gradient-weighted class activation mapping (G-CAM) [83] in

5The scores are averaged AP scores for three different backbones (R50-FPN,
R101-FPN, and X101-FPN).

order to highlight meaningful regions for detection tasks. We
demonstrate the G-CAM maps for RoI features extracted from
the Cascade detectors. As shown, our Cascade D-PRD provides
more discriminative and localized gradients within each object
proposal than Cascade Mask R-CNN [24].

F. Detailed Evaluation of Feature Aggregation Tree

As shown in Fig. 1, at the leaf level l = 0 an aggregation
pair of the part RoI features (i.e. xkp−1

0 and x
kp

0 ) is determined
by their assigned node indices. When decomposing an object
box with kP = 4 part boxes, a node index in each sub-region is
determined by the following priority: leaf, right, top, and bottom
as depicted in Fig. 2. Since these indices affect the aggregation
pair and order, we investigate how much the fixed indexing rule
affects overall detection performance. To this end, we make a
comparison by assigning an index of the leaf nodes in a random
manner so as to allow FAT to be more flexible in determining the
indices of the leaf nodes. In a similar manner, we determine the
aggregation order of part features based on the assigned indices
in this case. We then compare the detection scores between the
fixed ordering and random ordering in Table VIII. Both ordering
strategies show the almost similar AP scores. It implies that our
FAT is not sensitive to the order of input features. This is because
the aggregation order can be different according to the leaf node
index, but all the part features are correlated with each other
through several feature aggregations eventually.

In our D-PRD, we replace our deformable part region network
with the deformable roi pooling method [22] since both methods
can deform pooling regions adaptively. Feature aggregation trees
are used for the fair comparison. As shown in Table VIII, our
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TABLE VIII
COMPARISON OF THE FEATURE AGGREGATION TREE BY APPLYING DIFFERENT

METHODS ON THE COCO2017 VAL SET. THE R50-FPN IS USED AS A

BACKBONE

DPR-Net shows the better scores than the deformable pooling. In
addition, we evaluate D-PRD with deformable convolution [22].
In specific, we apply the deformable convolution on the stage
3-5 of R50-FPN. Since the deformable convolution enhances
the robustness of the detection backbone over the geometric
variation, we can improve box and mask AP scores by 1.1 and
1.2 points.

In addition, we compare our detector with/without attention
learning to show its effects. To this end, we replace the at-
tention function G(·) with element-wise sum or element-wise
max functions. To keep the channel dimensionality, we ap-
ply both non-attention functions across channels. As shown in
Table VIII, large accuracy degradation occurs when applying
the non-attention functions. Therefore, our spatial and channel
attention function is key for learning more powerful aggregation
features.

G. Evaluation With One-Stage Detector

To show the compatibility of our methods with other detection
frameworks, we combine our cascade D-PRD with the Reti-
naNet [43]. As a baseline, we use the implemented RetinaNet
of Detectron2 since it is the improved version of the original
one. We maintain the tuned parameters and use the feature
maps {P3, P4, P5, P6} except for the P2 (c.f. used in most
two-stage detectors). Then, by feeding the multi-scale features
to the RetinaNet, we can predict the box proposals and their
confidence scores over cls object classes. Here, the total number
of proposals is

∑6
l=3 Hl ×Wl ×Al, where Hl and Wl are the

height and width of the feature mapPl at level l.Al is the number
of the used anchors. However, we keep 512 proposals only by
using the score thresholding and non-maximum suppression. We
then feed the remaining ones to our Cascade D-PRD shown in
Fig. 4. Since the RetinaNet uses classification and box headers
only, we do not use Mask and MaskIoU headers per cascade
stage for a fair comparison. Except for this, the other default
setting used for the Cascade D-PRD is unchanged. We train our
Cascade D-PRD w/t Ret with the 3× schedule on the MSCOCO
dataset.

In Table IX, we have compared our Cascade D-PRD w/t
Ret with the RetinaNet. We can greatly boost the box AP by
5.3 compared to the RetinaNet w/t R50-FPN. In addition, our
cascade detector even shows the better scores than RetinaNet
w/t R101-FPN. Therefore, more improvement can be easily
achieved by using the larger backbone or the higher-resolution

TABLE IX
COMPARISON BETWEEN THE RETINANET [20] AND OUR CASCADE D-PRD W/T

RET DETECTORS ON THE COCO2017 VAL DATASETS

P2 feature map. This experiment also indicates that our Cascade
D-PRD can be compatible with other frameworks and provide
the obvious accuracy gains.

H. Benchmark Results

We evaluate our Cascade D-PRD on the COCO evaluation
server and PASCAL VOC07/12 dataset and compare our method
with state-of-the-art (SOTA) detectors.

1) MS-COCO: We participate in the COCO detection chal-
lenges and report the best results on evaluation server. We
train our several versions of D-PRD and Cascade D-PRD with
different backbones (i.e. ResNet50-FPN, ResNet101-FPN, and
X101-FPN). For Cascade D-PRDs, we compare the feature
aggregation methods by using region decomposition assembly
network (RDA-Net) and feature aggregation tree (FAT) methods.
We use the RDA-Net to aggregate two different RoI features
of part models instead of using FAT (2). More specially, for
x2p−1
l−1 and x2p

l−1, we can merge the features of children nodes
by using region assembly block (RAB) at each level l: xp

l =

RAB(x2p−1
l−1 ,x2p

l−1). Here, the RAB consists of four consecutive
3 × 3 conv filters, ReLU functions, and one element-wise max
unit over each channel. The main effect of the RDA method
can extract maximum responses across spatial locations between
feature maps of object parts. Thus, we can improve the spatial
invariance more to feature position without a deep hierarchy than
using max pooling which supports a small region (e.g. 2× 2).
More details can be found in [77], [93].

Table X shows the comparison results with SOTA detectors.
Without bells and whistles, we achieve the best 49.9 box AP and
43.2 mask AP with the X101-FPN backbone. In addition, our
Cascade D-PRD with R50-FPN shows the much better scores
than other detectors with the better backbone even (e.g. HTC,
HCE, D2Det, QueryInst, etc). In addition, we achieve 51.9 box
and 45.5 mask APs using multi-scale testing. As shown in these
challenge leaderboards, our Cascade D-PRD is ranked on the
high place. We believe that more improvement can be achieved
by using multi-scale training or model ensemble. We also
provide the accuracy of D-PRDs with R50-FPN and R101-FPN.
Our detectors show the best results among detectors without
using the performance improvement methods.

In addition, we extensively compare our D-PRD and Cas-
cade D-PRD with FAT and RDA-Nets [93]. When comparing
the scores for all the backbones (ResNet50-FPN/ResNet101-
FPN/ResNeXt101-FPN) of using FAT and RDA-Nets, detectors
using FAT shows the better box and mask APs by 1.9 (1.7
for multi-scale testing) and 2.3 (2.1 for multi-scale testing) on
average. In particular, the FAT contributes to improving box and
mask scores for APS by 3.0 (3.6) and 2.7 (3.4) points. We also
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TABLE X
COMPARISON RESULTS ON THE COCO19 TEST-DEV DATA SET. ∗ AND � ARE MULTI-SCALE TESTING AND DATA AUGMENTATION RESULTS. † AND ◦ SHOW THE

RE-IMPLEMENTED RESULTS BY OURS AND OUR DETECTOR WITHOUT MASK HEADERS. OUR DETECTION AND SEGMENTATION RESULTS CAN BE FOUNDED

IN THE MSCOCO EVALUATION TEST-DEV2019 (BBOX) AND IN THE MSCOCO EVALUATION TEST-DEV2019 (SEGM), RESPECTIVELY

show that FAT is the more effective method for small object
detection and segmentation.

For boosting our Cascade D-PRD with ResNeXt101-FPN, we
exploit the self-learning [41] on the COCO unlabeled image set.
Note that this self-learning is also applied in other recent detec-
tors [95], [96], [97] for the system-level comparison. In specific,
we use the box pseudo-labels provided by CenterNet2 [96],
and train our Cascade D-PRD on COCO17 train (118 k) and
unlabed (123 k) datasets. In addition, we increase the ranges of
multi-scale training for the short edge to [480, 1400] and the
maximum long edge to 1600. As a result, we achieve 53.8 and
55.2 box AP scores without/with multi-scale testing.

For the more system-level detection comparison, we apply the
stronger backbone Swin-L [98] for the our cascade D-PRD. We
exploit the ImageNet-22 K pre-trained Swin-L model. We feed
multi-scale features of the Swin-L to the subsequent networks
(i.e. DPR/FAT and several detection headers shown in Fig. 4(c)).
We use the default multi-scale training (the shorter side is [640,
800] and longer side is at most 1333), and AdamW optimizer
with the initial learning rate of 0.00005, weight decay of 0.05,
and batch size of 8. We train our cascade D-PRD with Swin-
L by using the 3× schedule on COCO labeled and unlabeled
sets. As a result, we can further improve box AP to 55.2. By

Fig. 7. Comparisons with the recent cascade-based detectors in terms of speed
and accuracy. All scores are evaluated for single-model single-scale. Our cascade
D-PRD achieves the 55.2 AP while showing the better speed than other detectors
(i.e. Cascade R-CNN and HTC). Here, SL means the self-learning on the COCO
unlabeled dataset.

applying multi-scale testing, the final detection score reaches
57.9. We expect that more enhancement is possible via the more
extensive self-training [95] on the unlabeled Object 365 dataset,
stronger multi-scale training [98], and longer training schedule
and large-scale jitter [81], [95], etc.

Note that our detectors can achieve the almost same detection
AP scores (w/t mask of 51.9 and w/o mask of 51.8) when
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Fig. 8. Detection and instance segmentation results of the Cascade Mask R-CNN (top) and Cascade D-PRD with X101-FPN (bottom) are compared.

comparing the scores between Cascade D-PRD with X101-FPN.
Moreover, our cascade detectors using the self-learning achieve
the high box AP scores without self-learning on mask instances.
These results indicate that our weak-supervision for learning
deformable part models is not affected by the usage of the mask
information.

Fig. 7 compares the accuracy and latency for the several
cascade-based detectors: cascade R-CNN [24], HTC [25], SC-
Net [40], GCNet [94]. We also report the performance variation
for the different backbones. We find out that there is a large
accuracy improvement but the degradation of latency when
applying the cascade scheme. In addition, the self-learning on
the additional dataset leads to significant accuracy improvement.
Our Cascade D-PRD consistently outperforms the recent cas-
cade detectors [24], [25] with the lower latency. Compared to
the SCNet [40] and GCNet [94], they show the better latency,
but our detector achieves the much higher accuracy. In particular,
our cascade D-PRD with the Swin-L backbone is much superior
to other cascade detectors in terms of accuracy.

TABLE XI
COMPARISON OF DIFFERENT DETECTORS ON VOC2007 TEST. CASCADE

R-CNN RESULTS CAN BE FOUNDED IN THIS CODE WEBSITE. THE FCOS,
ATSS, PAA, AND IQET DETECTION RESULTS COME FROM [85]. SR-RCNN

AND RETINA-SWN RESULTS ARE IN [99] AND [89]

2) Pascal VOC: We evaluate our Cascade D-PRDs on the
VOC07/12 datasets in order to show the generalization ability of
our detectors. We maintain the overall structures of our detectors
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Fig. 9. Instance segmentation results on the COCO dataset using our Cascade D-PRD with X101-FPN. We mark a bounding box and mask with the same color
for whole objects. The left, right, top, and bottom part boxes are colored with cyan, orange, purple, and red, respectively. The last row shows the examples of
inaccurate detections.
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for a fair comparison, and only change the training schedule.6

For training and evaluation, we use the VOC07/12 trainval sets
and VOC07 test set, respectively.

In Table XI, we compare ours with many recent detectors.
We can achieve the best results with the R50-FPN backbone
only even though using the deeper backbones produces the
better detection scores. Compared to IQDET [85], our detector
improve AP, AP50, and AP75 by 5.95%, 1.47%, and 7.18%
for the same R50-FPN. The significant improvements also prove
the effects of the proposed methods.

I. Qualitative Results

We compare the detection results of our Cascade D-PRD with
Cascade Mask R-CNN in Fig. 8. For easier comparison, we
mark the false positives and false negatives with the colored and
dotted circles. We know that the inaccurate detections occur in
the Cascade Mask R-CNN for the small objects and occluded
ones. On the other hand, our detector can handle the issues due to
the powerful deformable part learning and feature aggregation
methods.

Fig. 9 shows the visualization results. We also depict de-
tected whole object regions with colored masks and its four-part
regions with different color boxes. Although our object part
regions do not correctly match with actual object parts, object
part regions can be learned to be deformable according to
an object category, scale, and pose. The deformability of the
part boxes can improve the robustness against geometric varia-
tions. Furthermore, it represents crucial regions that should be
extracted for learning object part details and the global context
around the object.

In the last row in Fig. 9, we present some inaccurate detection
results. As can be seen, these failures occurred due to the
inaccurate classification rather than the localization problem.
We expect that this problem is caused due to the global context
learning based on the deformable part models. Specifically, since
the context between an object and its background can be learned,
our detector could predict the wrong classes as the boat, teddy
bear, and bench by considering the relationship between the
objects and the vicinity of the object.

VI. CONCLUSION

Detecting and segmenting object regions are still challenging
problems due to occlusions and small object sizes. To resolve
this, we present a deformable part model-based detector (D-
PRD) for improving object detection. We propose a deformable
part region network that can transform decomposed part re-
gions according to the geometric transformation of an object.
In order to learn discriminative semantic feature representation,
we propose a feature aggregation tree. Based on the bottom-up
feature aggregation starting from leaf nodes, our tree network
can produce the strongest features at the top levels. Here, when
aggregating the lower-level features, we exploit the spatial and
channel attention for finding the more meaningful semantic
features suitable for detection. We achieve this by maximizing

6Followed by the default setting provided by Detectron2.

the mutual information between the joint and marginal distri-
butions for part features. For learning our D-PRD without extra
supervision of part boxes, we present several detection losses for
part models. By extending D-PRD to a multi-stage refinement
scheme, we present a new cascade detector embedded with the
deformable part region and feature aggregation tree networks
that have shown remarkable detection results.

To verify our methods, we have implemented our D-PRDs
with FAT and R-DAD (i.e. feature aggregation methods) and sev-
eral backbones. We have compared our methods extensively with
other recent detection methods on the several benchmark chal-
lenges such as PASCAL VOC and MSCOCO datasets. Without
bells and whistles (e.g. multi-scale testing, model ensemble, etc),
we have proved that our deformable detector is superior to other
state-of-the-art detectors. When using the multi-scale testing,
our Cascade D-PRD shows the best scores among many recent
detectors. With the Swin-L backbone and self-learning [41], our
Cascade D-PRD achieves the remarkable box AP scores of 57.9.
Moreover, we have made the extensive ablation study to show
effectiveness and robustness of our methods. To this end, we have
implemented several versions of D-PRDs and Cascade D-PRDs
by adding our method one-by-one or changing structures, model
components, loss functions, etc. We believe that our deformable
part learning and feature aggregation methods would become
the crucial guideline for deformable part learning of modern
detectors.
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