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Confidence-Based Data Association and
Discriminative Deep Appearance Learning
for Robust Online Multi-Object Tracking

Seung-Hwan Bae™ and Kuk-Jin Yoon

, Member, IEEE

Abstract—Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the
information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in
associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose
a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using
the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the
tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways
according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and
fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association
between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model
from large training datasets, since the conventional appearance learning methods do not provide rich representation that can
distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance
discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show
distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness

of the proposed methods for online multi-object tracking.

Index Terms—Multi-object tracking, tracking-by-detection, tracklet confidence, confidence-based data association, deep appearance

learning, online transfer learning, surveillance system

1 INTRODUCTION

THE goal of multi-object tracking (MOT) is to estimate the
states of multiple objects, such as locations, velocities,
and sizes, while conserving their identifications under
appearance and motion variations with time. In a complex
scene, this problem is still challenging due to frequent
occlusion of target objects by a clutter or other objects, simi-
lar appearances of target objects, and so on.

To solve this problem, many different methods have
been proposed for decades. Among them, tracking-by-
detection methods have shown impressive performance
improvement in multi-object tracking thanks to the devel-
opment of reliable object detectors [1], [2]. The tracking-by-
detection methods generally build long tracks of objects
by associating detections provided by detectors. Thus, these
methods can recover tracking failures by finding the
object hypothesis from the detections. In addition, by using
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detections, the search space of object hypothesis can be
greatly reduced and new track initialization can be also
achieved automatically.

The tracking-by-detection methods can be roughly catego-
rized into batch and online methods. Batch methods [3], [4],
[5], [6], [7] usually utilize the detections of all the frames of the
sequence together to build long tracks robustly against occlu-
sion and false detections. In general, given a set of detections,
short tracklets are generated first by linking individual detec-
tions, and the tracklets are then globally associated to build
longer tracklets. Therefore, the global association is very
important in this approach, and many methods [3], [6], [7] for
the global association have been proposed. However, the per-
formance of the batch methods is still limited when tracking
multiple objects with similar appearances. Moreover, since
they usually require the detections for an entire sequence
beforehand and also require expensive computation for the
iterative associations to generate globally optimized tracks, it
is hard to apply the batch methods to real-time applications.

On the other hand, online methods [8], [9], [10], [11], [12],
[13], [14] can be applied to real-time applications because
they sequentially build trajectories based on the frame-by-
frame association using the information given up to the
present frame. However, in return, the online methods tend
to produce fragmented trajectories and to drift under occlu-
sion and detection errors, because it is more difficult to
handle inaccurate detections (e.g., false positive and false
negative) compared to the batch methods.
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Fig. 1. Contaminated training samples in tracking sequences.

In this paper, we propose a robust online MOT method in
consideration of the aforementioned limitations of previous
methods. The proposed method is based on (1) confidence-
based data association to handle track fragments due to occlu-
sion or unreliable detections and (2) discriminative deep
appearance learning to handle similar appearances of objects
in tracklet association.

To handle track fragments due to occlusion or unreliable
detections, we first propose the tracklet confidence based on
the detectability and continuity of a tracklet. We then divide
the online association problem into subproblems, which are
high and low confidence (HC- & LC-) association problems
based on the tracklet confidence and solve the online multi-
object tracking problem by associating tracklets and detec-
tions in different ways according to their confidence values:
reliable tracklets having high confidence values are locally
associated with online-provided detections first and the track-
lets having low confidence values are globally associated with
other tracklets and detections later. Based on this strategy,
tracklets sequentially grow with online-provided detections
and fragmented tracklets can be linked with others without
any iterative and expensive association steps.

Here, as described above, the core steps of the proposed
method are the HC and LC associations. In both steps, appear-
ance modeling is crucial for associating tracklets and detec-
tions of the same object while distinguishing different objects.
Actually, in recent years, the appearance learning has been a
key issue in MOT for handling appearance variations of target
objects and improving appearance discriminability between
objects. Previous methods typically learn object-specific [4],
[9], [10], [15] or object-shared [12], [16] appearance models of
target objects. However, the discriminability of learned
appearance models is often limited due to the small number
of samples and the samples contaminated by occlusions and
inaccurate tracking as shown in Fig. 1

One possible solution is to learn a discriminative appear-
ance model using well-managed large datasets beforehand,
and apply this model to multi-object tracking. However,
although a large number of datasets are available, previous
learning methods using boosting [4], [7], [9], [16], multiple
instance learning (MIL) [5], part models [10], and subspace
learning [12] do not learn rich representations due to their
limited capacity. This is because these methods build shal-
low architectures by linearly combining several classifiers
or mapping features onto a linear projection matrix.

To overcome this limitation in appearance modeling, we
propose the deep appearance learning that can capture dis-
criminative deep representations from a large dataset and
distinguish multiple objects even with large appearance
variations. We first design a deep appearance model based
on the Siamese network [17] for learning a dissimilarity
metric between a pair of objects. Here, for improving the
discriminability of the Siamese network, we define the new
energy function based on a pairwise constraint with distan-
ces of object pairs instead of using the contrastive loss func-
tion [17] (In Table 4, both energy functions are compared).

We then learn discriminative deep representations (or dis-
similarity metric) by minimizing the energy function. To do
this, we derive the gradients of the defined energy with
respect to learnable parameters of each layer. As a result,
the appearance model minimizes the distances for the same
object pairs (i.e., positive pairs) while maximizing it for the
different object pairs (i.e., negative pairs). In addition, we
combine online transfer learning (OTL) with our deep learn-
ing for fine-tuning the learned deep model using online
tracking data. As a result, we can transfer the learned deep
representation to online MOT and make the deep appear-
ance model more suitable for the specific tracking sequence,
and also handle appearance variations of target objects dur-
ing tracking.

To sum up, the main contributions of this paper can be
summarized as follows:

(i) proposition of a tracklet confidence for evaluating
tracklet’s reliability, and confidence-based associa-
tions for building locally and globally optimal
tracklets,

(ii)  proposition of a deep learning method for discrimi-
nating different objects and adapting the learned
appearances with ongoing tracking results, and (iii)
proposition of a practical whole online tracking
framework by effectively combining our methods, as
given in Fig. 3.

2 RELATED WORKS

In this section, we introduce previous works on MOT and
appearance learning for tracking, which are closely related
to our work.

Given detections from a detector at each frame, online
tracking methods locally associate detections frame-by-
frame to build long trajectories in general. Based on the par-
ticle filtering [18], [19], [20] guides multiple trackers with
detections to track objects under occlusions. An edgelet-
based part model [8] is also exploited for describing appear-
ances of objects. However, methods using the pre-deifmend
appearance models [8], [20], [21], [22], [23] suffer from track
drift when appearances dramatically change.

In order to solve the drift problem, online classifiers [9],
[10], [11], [14], [24] trained during tracking are used to capture
object appearance variations and find object hypotheses
under occlusion. The confidence map [9] to combine the out-
puts of a pre-trained detector and an online-trained classifier
is constructed. By applying the deformable part model, [10]
handle partial occlusions. Recently, [24] learn a similarity
function with reinforcement learning. Although they show
improved performance in many scenarios, these local associa-
tion-based tracking methods still tend to produce short frag-
mented trajectories under long-term occlusion because they
only use the information in two consecutive frames.

For building long trajectories under occlusions, global
association methods [3], [4], [5], [6], [7], [25], [26] build opti-
mal tracklets with all detections for a sequence in general. A
hierarchical association framework [21] is designed to pro-
duce longer tracklets at each level gradually. In [23] and
[27], they solve a global data association problem using a
min-cost flow algorithm in a network flow. In [3], short
tracklets are merged into longer ones by finding maximum
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weighted independent sets in a graph of detection pairs. [7]
develop an online-learned CRF model and link tracklets by
minimizing an energy function. [6] present an energy func-
tion and an optimization scheme for finding the optimal set
of tracklets. In [26], the classical MHT algorithm is enhanced
for MOT.

On the other hand, some methods have been proposed
for discriminative appearance models for MOT. To handle
appearance variations by updating appearance models,
some methods [9], [11], [15], [28] employ target-specific
appearance models with ensemble learning [15] and online
boosting [28]. However, their appearance models are
trained for distinguishing a target object from the back-
ground, rather than other objects. To learn appearance mod-
els discriminating multiple different objects, a few methods
[4], [5], [7], [29] collect positive samples from the same track-
lets and negative samples from other tracklets after low-
level associations, and the models are simultaneously
learned using standard AdaBoost [4], [7], [29] or multiple-
instance learning (MIL) [5] methods. However, these learn-
ing methods are not appropriate for updating learned
appearance models online because the appearance models
are learned in a batch manner. In addition, the discrimina-
bility of the existing appearance learning methods [4], [7],
[9], [11], [29] is often limited due to the small number of
training samples and their shallow representation models.

Inspired by the recent advances in deep learning, several
appearance models using deep learning have been pro-
posed for visual object tracking in [30], [31]. These models
have shown that generic features robust against appearance
variations and cluttered background can be trained using
deep learning. However, their models are learned for repre-
senting object appearances in different categories, while an
appearance model for MOT should be learned for discrimi-
nating object appearances in the same category. Recently,
discriminative deep models based on the Siamese network
[17] have been developed for person re-identification [32]
and face recognition [33]. For identifying two input images,
they usually learn distance metrics [17], [32] and/or the cor-
relation patterns between filters [33]. In this paper, we also
design our deep appearance model based on the Siamese
network for improving discriminability of objects in the
same category. However, we leverage online transfer learn-
ing for handling appearance variations of target objects and
make the learned model more suitable for the specific track-
ing sequence.

3 ONLINE MULTI-OBJECT TRACKING WITH
TRACKLET CONFIDENCE

If object i appears at frame ¢, we denote it by using a binary
function as v'(t) = 1. Otherwise, v’(t) = 0. When v'(¢) = 1,
the state of object i is represented as x; = (p},s!, vi), where
p;, s;, and v, are the position, size, and velocity, respec-
tively. The tracklet of an object i, 77, is then defined as a set
of states up to frame t, and denoted as T" = {xi|v'(k) = 1,
1 <t <k<t <t}, where t\ and ¢! are the time stamps of
the start- and end-frame of the tracklet. In addition, a set of
tracklets of all objects up to frame ¢ is denoted as T.;. Simi-
larly, we denote the detection of object i at frame ¢ as z}, and
a set of all detections up to frame ¢ as Z;;. Then, the online

multi-object tracking problem can be formulated as to find
the optimal T;.; by maximizing the posterior probability for
given Zy, as
']AI'll\ItAP = ar%‘maxp(TLAZl;t). (1)
1:t

Note that directly solving Eq. (1) is not feasible in practice
because the number of all possible combinations of T, and
Zy. is innumerable. In practice, one sequentially and itera-
tively associates detections rather than associating all detec-
tions at once. In this work, we divide the association
problem Eq. (1) into the subproblems Eq. (5) using the track-
let confidence Eq. (2), and sequentially associate detections
with tracklets.

3.1 Tracklet Confidence

Tracklet confidence can be intuitively interpreted as the reli-
ability measure of the tracklet constructed during tracking
with time. It can be measured based on the following
factors:

e Length: while a short tracklet tends to be unreliable,
a long tracklet is more likely to be a reliable tracklet
of an object.

e Occlusion: a tracklet severely occluded by other
tracklets may not be a reliable tracklet.

e Affinity: a reliable tracklet will have a high affinity
score with an associated detection.

In this paper, we model the tracklet confidence conf(T;)

based on the above factors as

conf(T;) (% Eke[tg.té],vi(k):l A(Tf, Zi))

2

X (1 —exp v (L_w)), .
where L is the cardinality of 7° (i.e., the length of a tracklet)
as L = |T%|, and w is the number of frames in which the
object i is missing due to occlusion by other objects or unre-
liable detection as w=1t' —t +1— L. The first term in
Eq. (2) is the average affinity score between the tracklet and
associated observations (i.e., detections): a high affinity
score increases the confidence. Here, the affinity can be
defined by using several cues. We define the affinity in Sec-
tion 3.2. The second term in Eq. (2) is also computed with L
and w together, and decreases for short or heavily occluded
tracklets. B is a control parameter relying on the perfor-
mance of a detector. When a detector shows high accuracy,
B should be set to a large value. The first and the second
terms are all closely related to the detectability and the con-
tinuity of a tracklet. Fig. 2 shows the confidence variation of
an object under occlusion.

3.2 Affinity Model

We describe tracklet 7% with three elements {A?, S¢, M},
where A’, S' and M’ represent appearance, shape, and
motion models, respectively. Then, an affinity measure to
determine how well two tracklets (or a tracklet and a detec-
tion) are matched is defined as

A(X,Y) = AY(X,Y)AS (X, Y)AM(X,Y), 3)
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Fig. 2. Tracklet confidence variation of an object (in the PETS-L1
sequence) under occlusion. Under occlusion, the confidence decreases,
but it then gradually increases by association with detections with time.

where X and Y can be tracklets or detections. Each affinity
score is computed as follows:

AMXY) = exp(=1/¢ - (D)%, %)),

S _ hx—h wyx—w
A (Xv Y) - eXp(_{hiﬂLi + ufﬁrui}) (4)
A]\I (X, Y) _ N(ptml 4 VX® phcad OF)

X N( }L“ld+V€® ptall OB)

For the appearance affinity A*(X,Y’), we exploit the pro-
posed appearance model. We first extract output features
for image pairs x, and x, using forward propagation and
then compute their L2 distance D?(x,,x,) using Eq. (10).
The shape afflm'?/ A® X Y)is calculated with their height &
and width w. A (X,Y) is the motion affinity between X tail
(i.e., the last refmed position) and Y head (i.e., the first
refined position) with the frame gap ©. The forward veloc-
ity vk is evaluated from the head to the tail of X, while the
backward velocity v{ is evaluated from the tail to the head
of Y. The difference between the predicted position com-
puted with the velocity and the refined position is assumed
to follow a Gaussian distribution. Note that only the for-
ward motion is used when evaluating affinity between a
tracklet and a detection.

Online Multi-Object Tracking with Tracklet Confidence

R “Online

_____________

3.3 Online MOT Formulation with Tracklet
Confidence

To effectively solve the online multi-object tracking prob-
lem, we reformulate the online multi-object problem Eq. (1)
by using the tracklet confidence as

T4 = argmax / / p(Trlm {187 ) x p(T0) 101210 )
T

= argmax // T, r|']T1htL T lo )
Tyt
[0) | (h1) (hi)
p(Tl;t |T1;t ’let) ( ‘ Z1 t) dTlt dTlt s

LC—association

HC—association

(5)

Here, T\") and T\ represent a set of tracklets with high
confidence and a set of tracklets with low confidence. As
shown in Eq. (5), the problem is solved in two phases: track-
lets with high confidence are locally associated with online-
provided detections in the HC-association phase, while
tracklets with low confidence, which are more likely to be
fragmented, are globally associated with other tracklets and
detections in the LC-association phase. To be more concrete,
the tracklets with high confidence are first considered to be
locally associated with detections, because detections are
more likely to be correctly associated with the reliable track-
lets with high confidence than the tracklets with low confi-
dence. The HC-association allows us to progressively grow
locally optimal tracklets with online provided-detections.
The target object being tracked, however, is frequently not
detected (by a detector) due to occlusion or unreliable detec-
tors. When a detection of the object is not available, the con-
fidence of a tracklet decreases. Therefore, we consider the
tracklets with low confidence as fragmented and unreliable
tracklets, and globally associate them with other tracklets
and detections in the LC-association. The overall framework
of the proposed method is shown in Fig. 3. Here, since the
tracklet confidence lies in [0, 1], we consider a tracklet as a
reliable tracklet with high confidence when conf(T%) > 0.5;

Discriminative Deep Appearance Learning
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Fig. 3. Proposed framework for robust online multi-object tracking. Colors of tracklets indicate their confidence values.
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otherwise it is considered as the unreliable tracklet with low
confidence. In our experiment, the tracking performance,
however, is not significantly affected by this threshold.

3.4 High Confidence (HC-) Association of Tracklets
In the HC-association, tracklets with high confidence, T7°(*",
sequentially grow with a set of detections at frame ¢, Z;.
Pairwise association is performed to associate detection
responses with tracklets. When & tracklets with high confi-
dence and n detections are given at frame ¢, we compute a
score matrix Sy, defined as

S = [Slj}hxn’

where the affinity A(7"""),z]) is computed by Eq. (3). We
then determine tracklet-detection pairs using the Hungarian
algorithm [34] such that the total affinity in S, is maxi-
mized. When the association cost of a pair is less than a pre-
defined threshold, —log(6), z] is associated with T"(""). For
the tracklet 7°(") associated with detection z], the following
procedure is performed:

- —1og(A(Ti<hi>,z{)),z{ €7, (6

(i) The position and the velocity of a tracklet are
updated with the associated z]. The size of the object
is also updated by averaging the sizes of associated
detections of recent past frames.

(i) conf(T;) is updated using z] by Eq. (2).

Here, it is possible to skip this HC-association and try to
solve the problem via only the LC-association that will be
described in the next section. However, in this case, much
more computation is required and the performance is also
degraded. This is because the HC-association greatly
reduces the ambiguity in the LC-association as well as the
complexity. This is proven in Section 6.

3.5 Low Confidence (LC-) Association of Tracklets
In the LC-association, tracklets with low confidence, which
are more likely to be fragmented due to many reasons, are
globally associated with other tracklets and detections. Sup-
pose that there exist h and [ tracklets with high and low con-
fidence, respectively. Since association events are mutually
exclusive, we only consider n detections, Y, = {y/}" i1 CZy
in associating 7"(°), where Y, is a set of detections not asso-
ciated with any T‘<’“> in the HC-association. The following
association events are then considered:

e Event A: T is associated with T4,

e EventB: T is terminated, _

e Event C: 7" is associated with yJ.

We define the cost matrix for all events as follows:

B Apsn Bix
G(l+n)><(h+l) - _log(g)nxh Cnxl @
Here, A = [a;;] represents the event A, where a;; = —log

(A(T) TIM)) is the association cost computed by the
affinity between them using Eq. (3). B = diag[bs,...,b]
models the event B, where b; = —log(1 — conf(T"?))) is the
cost to terminate 79, and C = [q J] represents the event C,
where ¢;; = —log(A(T7 (o) y7)) is the association cost com-
puted by Eq. (3). The same threshold 6 used in the HC-asso-
ciation is also employed to select reliable association pairs

having high affinity scores. Once the cost matrix is com-
puted, the optimal association pairs, which minimize the
LC-association cost in GG, are determined using the Hungar-
ian algorithm [34], and the tracklets and their confidence
values are updated with the results.

When association pairs exist between 7°(?) and 77" or
T'(°) and y}, in order to combine their appearance and motion
models, we horizontally concatenate their output features
extracted from the network, and generate the forward motion
from the head of 7"("”) to the tail of 7/(") or the position of y;.

4 DISCRIMINATIVE DEEP APPEARANCE LEARNING

As mentioned, the appearance modeling is very important
in both the high and low confidence association for associat-
ing tracklets and detections of the same object while distin-
guishing different objects. To this end, we propose to learn
discriminative deep appearance models in consideration of
two main issues in multi-object tracking: (1) online learning
to update appearance models according to ongoing tracking
results, and (2) online training sample collection for dis-
criminating appearances of multiple objects.

Unfortunately, most previous tracking methods with
online appearance learning focus on only one of theses
issues. For instance, some methods [9], [15], [28], [35] devise
online learning methods for adapting learned appearances,
but their sample collection strategies aim at distinguishing
an object from the background rather than other objects. On
the other hand, some methods [4], [5], [7], [29] collect train-
ing samples for discriminating different objects, but the dis-
criminative appearance models are learned in a batch
manner: once training samples are collected from the track-
lets after low-level association, the models are simulta-
neously learned with all collected samples.

Unlike these previous works, the proposed appearance
learning method is designed in consideration of two issues
together to learn discriminative deep appearance models
using online transfer learning. This allows us to distinguish
each object using learned deep representations and also
incrementally update the learned deep representations with
online tracking results. By exploiting the proposed appear-
ance learning, tracklet association can be successfully per-
formed even under occlusion.

In the proposed learning method, from a large training
dataset, discriminative deep representations (or dissimilarity
metric) is built by minimizing the output feature distance of
the same object pairs while maximizing it of the different
object pairs. Here, it is worthy of notice that we also use the
OTL method for adapting the learned deep network. The
main reason of using OTL is that we can increase the discrimi-
nability of the appearance model for distinguishing objects in
the specific tracking sequence. Furthermore, the benefit of our
OTL lies in reducing the online learning complexity by re-
training the high-level representation only while maintaining
the low-level representation learned in advance. These allow
us to accurately identify objects even under significant pose
and appearance changes and long-term occlusion.

4.1 Training Sample Collection

For training a deep model, we use the CUHKO2 [36] dataset
containing 7,262 image patches for 1,816 persons captured
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Fig. 4. Proposed discriminative deep appearance model: Our model is learned by minimizing the dlstances between high-level features of positive
pairs while maximizing the distances between the high-level features of negative pairs. Here, W', b', w! . and b’ are learned and shared parameters.
For the image pairs, the feature maps extracted from each layer with the parameters are depicted in eac row.

from 10 camera views. From the dataset, we collect 10,928
positive sample pairs. On the other hand, we can obtain a
huge number of negative pairs from all possible combina-
tions of persons. However, to avoid the data imbalance
problem, we set the ratio of positive to negative pairs to 1:2,
which gives the best performance shown in Fig. 9¢, and ran-
domly select negative pairs.

Given image patches (i.e., samples) with labels, we can
collect positive (i.e., belonging to the same object) and nega-
tive sample pairs (i.e., belonging to different objects). Then,
we construct a set B = {(x,,X,, yp,) } consisting of sample
pairs (x,,x,) and their labels y,,. Here, if x, and x, are a posi-
tive pair, then y,, = 1. Otherwise, y,,, = —1.

In our implementation, the patch is resized to
128 x 64 x 3, and the dimension of the feature is 24,576.
Since the feature dimension is very high, we project the
high-dimensional feature onto a low-dimensional subspace,
and compare the distance of the projected features using
discriminative deep learning.

4.2 Discriminative Deep Appearance Model

As in Fig. 4, our deep network consists of 8 layers: 3 convo-
lutional (C), 3 pooling (P), and 2 fully-connected (FC) layers.
For reducing learning complexity, the lower layers CP(1-3)
are designed by stacking several convolutional and max-
pooling layers, whereas the higher layers (FC1) are based
on the fully-connected neural layers for learning dependen-
cies between the extracted mid-level features. As a result,
we can extract meaningful features from the lower layers
and extend the space of feature representations by combin-
ing the mid-level features with the higher layers.'

4.2.1 Feature Extraction

We denote a feature map i of size h! x w' at layer [ as x
where [ =1,2,...,L, and h! and w' are the height and the
width of the map x!, respectively.

l
7

1. For notational convenience, we use *, ® and || H2r to denote the con-
volution, element-wise product, and Frobenius matrix norm. A is the
horizontally and vertically flipped matrix of A.

Input Layer. We take the image of an object of resolution
128 x 64 as an input. The image has three feature maps
from RGB channels, and each map x! is normalized by sub-
tracting its mean and dividing by its variance. In this paper,
this simple normalization yields better performance than
other normalization methods, such as local contrast normal-
ization [37] and ZCA whitening [38] as shown in Fig. 9d.

Convolution and Pooling (CP) Layer. To extract mid-level fea-
tures, an input feature map x/~! is convolved with different
kernels w' . of size m' x m' atlayer [, and then passed through
the nonlinear activation function f(-) to obtain output feature
maps X} of size (h'~! —m! + 1) x (W™ —m' +1)as

X = f(S w4 1), ®)

where bl,l- is a bias factor, and k' is the number of kernels used
at layer I. We use a hyperbolic tangent function as f(-) for
scaling the linear output because it improves convergence
[39] during training for normalized data with a zero mean
and unit variance.

To reduce the complexity for training the network and to
achieve spatial and configural invariance, we then generate
the down-sampled feature map of x| using max-pooling
with a scaling factor ». We select the maximum response
over each r x r subregion of the feature map. As a result,
the output feature map becomes r-times smaller along each
spatial dimension.

Fully-Connected (FC) Layer. In order to learn the depen-

dencies of the mid-level features, we concatenate all the

feature maps of the previous layer CP3 as o'"!=

[xl?}v:ll, ...,X1 |, and fully connect them to the neurons of
the output layer. The final outputs are also re-scaled by the
sigmoid activation function o(-) as

X =o(Wol™' +b),l=L 9

4.2.2 Discriminative Deep Representation Learning

For learning the discriminative deep appearance model, we
define an energy function with high-level feature distances
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Fig. 5. A loss function using the pairwise constraint. The loss decreases
when the feature distance of a positive pair is decreased but the distance
of a negative pair is increased.

of sample pairs, and derive the gradient of the ener?y func-
tion with respect to the parameters {Wl ww, b’, of
CP(1-3) and FC1 layers.

Given image pairs of objects, x, and x,, we can extract
their high-level features x' and x/ by passing them to the
network. We then define the similarity between x, and x, as
the distance of their output features using the square of the
L2 norm as

2
D2(xp,X,) = ‘ x) —xl ) (10)

Since our goal is to build a deep network that can dis-
criminate the appearances of object image pairs, we impose

D?(x,,%,) < © with a threshold t for positive pairs whereas

D?(x,,%,) > © for negative pairs, when training the net-
work. Based on this pairwise constraint, we define an
energy function as in [40] and learn parameters by minimiz-
ing the function defined as

argmin FE = F) + Fy = Z w(ypq< xp, xq) ‘L'))
{wiv'}

A L
32 (IWH W) =1

where W' ={wl} and b'={b/} for 1=1,2,3. y(e)=
1log(l +exp(,86)) is the generahzed logistic loss function,
Wthh is the smooth approximation of the hinge loss func-
tion. If x, and x, are a positive pair, y,, = 1. Otherwise,
Ypq = —1. The first term therefore penalizes the pair that
does not follow the pairwise constraint. On the other hand,
the second term penalizes the large weighs and biases with
the parameter A for preventing overfitting to the training
data. Fig. 5 shows the energy change for the distance
between an object pair.

Using the stochastic gradient descent, we learn the
parameters of all layers with a learning rate  as

1n

OE
wlzwl_ l:bl M_jv

oW b -

W ! By, 0E (12)
P p— ’vti ]’ — . ’—l.
1] ) a i J Y abj

Then, the learning problem is to find the gradients of the
energy function with respect to the network parameters. We
can efficiently derive the gradients by propagating the

sensitives (8, ), the derivatives of the error (or energy)
with respect to the total input map (z, z,), from higher to
lower layers. The complete derivation of the gradients can
be found in the next Section 4.2.3.

4.2.3 Gradient Derivation for Deep Appearance
Learning

We provide the derivation of the gradients of each layer
used for the deep appearance learning Eq. (12). The
back-propagated errors through layers of a network can
be considered as sensitivities, which are the derivatives
of the error (or energy) with respect to the total input
map, z and z!. Let then define the sensitivities for z,
and z, as 8" and y!. By propagating these sensitivities
from higher to lower layers, we can efficiently derive the
gradients of the energy with respect to parameters of
each layer.

Fully-Connected (FC1) Layer. Let define the error of the
distance of each positive and negative sample pair as

€= Yy (Dg (xp7xq) — 1:). (13)

As mentioned before, we ﬁrst derive the sensitivities of the

output layer (l = L) uSlng XHQ = mas

g OB DBy de 0D, o

oz,  de 0Dy I, 9z, T
| _ OB 9Ey de @a_xfl X =o(z)

9zl Je 3Dq axl 9zl ' q/

q g 0%y 0Z (14)

P V)= 0 =2 (x, %)
— =Y (e = =
ae 2 ’8Dg yP‘I’ a l a)’

j I

Dy N X X

— =2(x, — X, |,— =o0\(zZ |,— =0 |Z

Il » %) v )l a)
q P q

where z, = W'ol"! + b’ and z, = W'ol"! + b’ are total input
maps or weighted sums of the outputs of the previous
layer. By substituting them, we can derive the following &'
and y! as

8 =Y (€)ypg (x; - xé) oo (zlp),
Y= v (e)yn (xi) — xf{) s (zé)

With the sensitivities §' and y!, the gradients of the
energy function with respect to {W',b'} can be repre-
sented as

(15)

9E B OE, de aDg 8X‘i) 322 8Dg 8X£1 azé 0E,
W' de oD, \ X, ozl sW'  9x, ozl W' |  GW!
1\ T 1T
- Z(él(of17 DY =Yl ) + AW/
pq (16)
9E _ 0B, dc (9D, 0x, bz, 9D, 0x, 0z, 03B,
abl " de aD, \ X, 9z, gb' x| dzl ab' )  ob’
=> (8" —y)+ b
2

Pooling Layers. In the similar manner, we can derive the
sensitivities 8§ and yé of each map j of the pooling layer as
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where z];“ Sk e w40 and 2l =300 xé/
are o a m u ma s at the nex convolution
w4 bl total input’ t th t luti
layer N ote that xp i= ;7 ;and xq7 ;= ] at the pooling layer.

We can derive the sensitivities of the feature map i by
summing the convolved sensitivities of the next convolution
layer as

I K I+1 o I+l
& =21 (8 ) x Wy ,ylfz Yi ) x Wy

Convolution Layer. For CP(1-3) layers, the gradient of the
function with respect to {w/,, ]} can then be evaluated with
backpropagated sensitivities of the pooling layers. Note that
the number of kernels of the convolution layer is exactly the
same with that of the pooling layer. The sensitivities of the
convolution layers are then derived as

(18)

g _ 0B _ B oz, ol O _ OB oz, Xl
L T AR R PR O
0B _ g 07,5 a(“p( z,0)) _ 1 i (o
gzl T T 7 gyl ax! T =f Zpj)
Zpj PoJ 2 P.J
I, 0z N d(up(z,i)) 1 o, f/<zl )
9z [EN R S axl axl . T Vo aj)°
J @ .j @.j
19)
where zéj:Zfllxéll*w +b, and z| -:Zflleﬂl*
wi; + v'. We perform upsamphng up(-) with the factor r for
makmg zifjl (zf#) of the pooling layer be the same size as
xi) j( ;) of the convolution layer. The up sampled up(z l“)

and up( l“) are exactly the same with x}, ; and xqz

In convolution layers, the sensitivities 81 and ¥/ ; become

5 =u5) o () = () o £ (2),

From the above sensitivities, the gradients of the energy

(20)

function with respect to {WL i b } are
0B (3B z m IE, 2., | OB,
ang 8zm Loz wi ) awl)

~l— T
- Z(&é * (Xi)zl) _ Vé % (Xiu]) ) +)\W,lij,

08 _ (2B %y OE) 2,;) | 0Fy
v, oz, v oz b ) b

[ [ [

w,v

(21)

Here, the first term of the bias gradient evaluation repre-
sents the sum of differences over all elements in 83 and yé.

(a) CUHK

(b) ETHMS and PETS

Fig. 6. (a) Training samples. (b) Collected samples during tracking.

4.2.4  Online Transfer Learning (OTL)

Once the discriminative deep appearance model is trained,
we can use it for MOT directly. However, as shown in
Fig. 6, the data statistics are often different due to the differ-
ences of object sizes and orientations, occlusion patterns,
and illuminations. In addition, the object appearances fre-
quently vary during tracking shown in Fig. 6b-bottom. To
handle this problem, we perform online transfer learning,
which updates the parameters of the pre-learned deep
model with incoming tracking results.

For OTL, inspired by [41], we use the learned mid-level
feature representations from CP1 and CP2 layers of the pre-
trained deep network in Fig. 4. However, different from [41]
that considers transfer learning only, we consider the trans-
fer and online learning together for onilne MOT. Usually,
much more training samples are required to change the
structure of a pre-trained network than to re-train parame-
ters of the network only. For this reason, we re-train the net-
work parameters only while maintaining its structure for the
efficiency of online learning. Particularly, in our case, we
only re-train the high-level representations of CP3 and FC1
layers since it pr0v1des the best results. Here, we reset the
parameters {W', w! i b, bl} of both layers before OTL. From
extensive evaluations, we found that the parameter initiali-
zation before transfer learning is very essential for achieving
better performance. The performance evaluation for differ-
ent strategies of transfer learning is provided in Fig. 10.

In the proposed framework, the online transfer learning is
automatically performed during tracking based on the Algo-
rithm 1 when the average dissimilarity score for tracklets and
detections falls below to 0.5. This score is the average of the
elements of the appearance affinity matrix excluding appear-
ance affinities of association pairs and evaluated by Eq. (4).
At each frame, training samples are collected from the image
patches with the positions and sizes of detections. Since the
detections are sometimes inaccurate and coming from scene
clutter, we use only detections associated with tracklets for
training. In particular, we choose image patches from the
detections associated with the tracklets with high confidence
since image patches from the tracklets with low confidence
are more likely to be polluted by occlusion as shown in Fig. 7.
Given N image patches with labels, we can collect
NI1/2/(N — 2)! positive and negative sample pairs. For reduc-
ing the tracking complexity, however, we randomly select 200
positive and 400 negative sample pairs for each update.

The main benefit of our online transfer learning is that we
can greatly improve the MOT performance because the
deep appearance model can be adapted to be more suitable
for tracklet association of the specific tracking sequence as
proved in Table 1. We can further resolve complexity and
overfitting problems of online deep learning since we only
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Fig. 7. Training samples from the trackets with high confidence (red) and
low confidence (blue).

re-train the parameters of the higher layers while keeping
the parameters of other layers.

Algorithm 1. Deep Appearance Model Learning

1 Input: A training set containing sample pairs and their
labels B = {x,, X, Ypq }
Output: Updated parameters: {
2 // Initialize weights and biases
3 Initialize parameters Wb, ﬁ > bé
4 For i = 1 to E(number of Epoch) do
Randomly select sample pairs {x,,X,, ¥, } in B.
// Forward propagation
For/=1to L do
Extract pairwise feature maps {xéy XX, xf]}
using Eq. (8) or Eq. (9)
9 end
10 /I Back propagation
11 For!= Lto1do
OE OE

12 Compute gradients aw’ o0l ab’

{x;:%;:x,x. } by Eq (16) and (1)
13 end

14 // Update parameters
15 For/=1to L do

W, b, w! b’}

(/]

in Section (4.2.5)

g3 o U1

I for

16 Update parameters {W' b wi, b} with
3‘51 ’ 315 ’ Bw ’8b’} using Eq. (12)

17 end

18 end

4.2.5 Details of Discriminative Deep Model Learning
When learning the model, we resize and normalize the

images as discussed in Section 4.2.1. For CP(1-3) layers, we
use 12, 16, and 24 kernels of the sizes, 9 x 9,5 x 5,and 5 x 5

respectively. We use the same scaling factor » = 2 for all the
pooling layers. From the CP3 layer, we extract the 1152-
dimensional feature by concatenating all elements of the
24 maps of the size 12 x 4. We then fully connect it with
150 neurons in the FC1 layer.

For parameter initialization, we use the simple way
described in [42]. The biases bl (b') are set to 0 (0) and the

weights {W”,Wl } at each layer are determined as

I W V6 V6
twipy W~ U= o Vi
sents the uniform distribution in the range [—a, a]. n' is the
multiplication of the kernel size and the kernel number as
m! x m! x k' for the CP layers. However, 1’ is the number of
neurons for the FC1 layer.

To solve Eq. (11), we fix f to 3 since optimizing it trivially
reduces the energy without improving other parameters as
in [40]. From the evaluations, we set the size of the mini-
batch to 50, threshold t =1, the regularization parameter
A=05x10"%, and learning rate u = 10~® with the general
rules of thumb in deep learning (all the parameters are fixed
except for online learning evaluation in Section 6.1.)

where Ul[—a,a] repre-

5 DISCUSSION

In this section, we discuss important issues, related to this
paper.

Online and Real-Time Tracking.The online tracking sys-
tems should satisfy the following conditions:

e (cl) The output (i.e., tracking result) of the system
depends only on previous and current inputs, but
not future inputs, and is immediately available with
each incoming frame.

e (c2) The output of the system is computed and fixed
at each passing frame and it is not allowed to manip-
ulate the result of any past frame under any
circumstances.

The proposed framework is a frame-by-frame MOT
framework and the output of each part shown in Fig. 3 relies
only on the past and current results of other parts. Further-
more, the tracking results (i.e., box locations, sizes, and IDs)
for each frame are immediately stored with each incoming
frame (without any frame delay) and fix them for evalua-
tion. Therefore, our framework meets all the conditions
((c1) and (c2)) for online tracking.

TABLE 1
Performance Comparison with Different Association and Appearance Learning Algorithms
Dataset Method MOTPT MOTAT GT MT1 PT ML| IDS| FG| REC| PRE] FAF]|
A. Data association comparison (with the proposed appearance learning)
al - w/o LC-assoc. 7255% 6253 % 417 5324 % 38.61 % 8.15% 1026 1209 76.44 % 84.70 % 1.88
a2 - w/o HC-assoc. 7283 % 63.01% 417 5827 % 3477 % 695% 612 1037 7857 % 83.76 % 2.52
PETS a3 - Greedy [10] 7222% 61.92% 417 5516 % 3693 % 791 % 419 1041 7729 % 83.72% 2.27
ETHMS a4 - with DA-TEP [14] 7258 % 64.90% 417 59.95% 33.33% 6.71% 452 973 79.25% 83.04 % 2.03
Town Centre B. Appearance learning comparison (with the proposed data association)
(Average) bl-w/oonlinelearning 72.73% 5729 % 417 51.56 % 4125% 7.19% 478 863 7525% 79.98% 2.80
b2 - with ILDA [12] 73.38% 6574 % 417 64.27 % 29.50 % 6.24 % 503 722 80.26 % 85.03 % 2.16
b3-w/o OTL 7343 % 6736 % 417 63.79% 2998 % 6.24% 393 681 80.44 % 86.63 % 1.82
pl - withall 74.31% 69.85% 417 6643 % 2686 % 6.71% 314 446 8217 % 86.98 % 1.78

For Each Metric, the Best Results are Marked in Red Color and Bold. (Refer to the supplementary material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2691769 for more results).
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(c) Bahnhof {491

(a) Bahnhof #462 (b) Bahnhof 484

Fig. 8. The ID correction by the LC-association: ID 48 is changed to ID 43
by occlusion. However, it is successfully recovered to its original ID after
the LC-association.

Indeed, the past tracking results could be corrected with
the LC-association and it would lead the improvement of
tracking performance. For instance, the ID of a tracklet can be
completely replaced with the ID of the associated tracklet,
and some missing results can be filled by interpolating the
states of the associated tracklets. However, in our implemen-
tation, we do not change the past results at all for online track-
ing. When a LC-association event occurs, we replace the ID of
the newer tracklet with the ID of the older tracklet only for the
current frame. This allows us to correct the corrupted ID by
any reasons only at the current frame not past frames. For
example, suppose that we have two trackets, an older tracklet
T in the range of [t — [,t — m] with the ID i from (¢t — ) to
(t —m), and a newer tracklet 77 in the range of [t — n, t] with
the ID j from (¢t — n) to t, where | < m < n.If a LC-associa-
tion event occurs between 7% and 77 (I and TV are linked) at
the current frame ¢, then we change the ID of a newer tracklet
T from j to i only for the current frame and, in this case, 77
has the ID j from (¢ — n) to (¢ — 1) and the ID ¢ at time ¢.

In fact, this ID correction by the LC-association increases
the number of ID switches. However, in our experiments,
using the LC-association improves the overall performance
as proved in Table 1 since more accurate appearance and
motion models can be generated by combining the models
of associated tracklets as described in Section 3.5. Fig. 8
shows the ID correction by LC-association. The IDs shown
in the figure are actually from our results to illustrate that
we do not change the ID of the associated tracklet for the
past frame. The object ID remains 43 at frame §484 in our
results even though it is changed to 48 at frame £491.

Our system was implemented using MATLAB on a PC
with a 3.07 GHZ CPU (single core) without parallel processing.
The run-time relies on the total amount of detections and train-
ing samples used for online learning. For the less crowded
ETH-Crossing (with 3,000 samples) and the crowded PETS-L2
(with 5000 samples) scenes, the run-times of our system are
0.56 and 1.81 (sec/frame), respectively. When excluding the
online transfer learning, the run-times are 0.18 and 0.98 (sec/
frame) for each sequence. We can also reduce the run-time by
about 25 percent on average by performing the global associa-
tion every 10 frames (the performance is degraded in return),
which is performed every frame in our current implementa-
tion. The main bottleneck of our system occurs during the for-
ward/backward propagation in the deep network. Even
though the current implemented system does not work in
real-time, we confirm that the speed can be greatly improved
with GPU programming for the data propagation.

Transfer Learning and Fine-Tuning. Recently, it is common
to use pre-trained networks (e.g., AlexNet [43], VGG16 [44],
ResNet [45]) trained with very large datasets as a backbone
for designing a deep network, and fine-tune them to be

suitable for new tasks. Many works [1], [2], [41] show that
the fine-tuning is often more effective rather than training
an entire network from scratch.

Inspired by the effect of the transfer learning, we first
train a discriminative appearance model with a large data-
set, and fine-tune it for each tracking sequence. As shown in
Fig. 10 and Table 1, the transfer learning improves the clas-
sification rate and overall MOT performance. The main rea-
son of the performance improvement is that generic
discriminative and data-specific discriminative features can
be learned by pre-training and online transfer learning, and
captured from lower and higher layers.

As described in Section 4.2.4, we only fine-tune the
higher layers (CP3-FC1) during tracking. If a large number
of data is available during tracking, fine-tuning a whole net-
work would be the better idea. However, in many cases, the
number of samples collected during tracking is relatively
small, and the fine-tuning the whole parameters of the net-
work from top to bottom with small samples increases the
possibility of over-fitting, and also increases the complexity
of the back-propagation. Therefore, we only fine-tune the
parameters of the higher layers while keeping the represen-
tation of the lower layers.

6 EXPERIMENTS

We first verify the effectiveness of the proposed deep learn-
ing by applying it for a person re-identification problem.
Then, we analyze the performance improvement in MOT by
the proposed data association framework and deep appear-
ance learning in detail.

6.1 Evaluation of Deep Appearance Learning
Evaluation of Training Strategies. In order to determine the
best architecture, we implement different versions of the
network by changing its structure, parameters, and types of
functions one-by-one, and compare their performance using
the CUHKO01/02 [36] person re-identification datasets.
Based on the five-fold cross validation, we evaluate the clas-
sification rate by computing areas under the receiver operat-
ing characteristic curves for distances between object pairs
and their labels.

In Fig. 9a, we see that removing the last convolution-pool-
ing layer (CP3 or P3) considerably decreases the rate from
81.81 to 73.54 percent or 67.48 percent. In addition, using gray
images instead of color images reduces the network discrimi-
nability as in Fig. 9b. Fig. 9c shows that learning with a
skewed dataset (containing too many negative pairs) also
degrades performance because the network is likely to be
over-fitted to the negative class. Figs. 9d and 9e prove that
employing other normalization methods and changing the
kernel number within CP(1-3) layers do not help to increase
the rate. In this case, using max pooling produces better
results than mean pooling as can be seen in Fig. 9f.

We also evaluate the classification rate without using the
learned distance metric. In this case, the similarity between
extracted 150-dimensional output features is computed
with the Bhattacharyya distance. However, the classification
rate decreased by 9.03 percent, compared to when using the
learned distance metric.

Evaluation of Transfer Learning. We also verify the benefits
of transfer learning for MOT. To this end, we train the deep
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Fig. 9. Performance comparison for various architectures: (a) Different network structures. (b) Color and gray image patches as input maps.
(c) Different ratios of positive and negative sample pairs (RPN) for network training. (d) Different normalization methods, local contrast [37] and ZCA
whitening [38]. (e) Different numbers of kernels of CP(1-3) layers. (f) Different pooling schemes for CP1-CP3 layers.

appearance model (shown in Fig. 4) with the CUHKO01/02
datasets. We then re-train and evaluate it for the other per-
son re-identification dataset, ETHZ [46], using transfer
learning. The ETHZ dataset contains significant appearance
variations due to occlusions, illumination variation, object
motion, and camera viewpoint changes. Therefore, it is
appropriate for preliminary feasibility study before apply-
ing our discriminative deep appearance model to MOT.

Fig. 10 compares the classification rates of the transfer-
learned models for each sequence of the ETHZ dataset.” In
all the cases, the transfer learning (Re-Learn (CP3-FC1))
enhanced the classification rates for our deep model, com-
pared with the rates of Without Re-Learning and Re-Learn
(All Layers). In addition, only re-training CP3-FC1 layers
shows the higher rates than using other strategies. Also, we
confirm that the parameter initialization is necessary for bet-
ter transfer learning by comparing the rates of Re-Learn
(CP3-FC1) and Re-Learn (CP3-FC1 w/o Init.).

Evaluation of Online Learning. Finally, we verify the effect of
online learning in MOT. For this, we collect 3,000 training
sample pairs from each sequence and divide them into 60 sub-
sets. During 60 iterations, we gradually update the parame-
ters of the CP3-FCl1 layers of the pre-trained networks (using
CUHKO2 dataset) for each subset while keeping the parame-
ters of other lower layers. For each iteration, we also evaluate
their classification rates for 4,500 test sample pairs.

Fig. 11 shows the results. To show the effectiveness, we
compare the performance of online learning with that of batch
learning, which updates the network with all the samples at
once. For batch learning, we decrease the learning rate to
p =5 x 10~*. Compared to classification rates of batch learn-
ing, the rates of online learning become almost similar after a
few iterations. Fig. 12 demonstrates the extracted feature
maps of CP1-CP3 layers for different datasets.

6.2 MOT System Implementation
We have implemented the proposed online tracking frame-
work using MATLAB. Our source code is fully available at
https:/ /cvl.gist.ac.kr/project/cmot.html.

New Track Initialization. By applying the pre-trained detec-
tor at each frame, we can obtain object hypotheses with the

2. For example, Re-Learn (CP3-FC1) means that we only re-train the
parameters of the CP3 and FC1 layers with ETHZ datasets while keep-
ing the parameters of other layers learned from the CUHK datasets. In
addition, Re-Learn (All Layers) means that we re-train the parameters
of all the layers with the ETHZ datasets, and Without Re-Learning
means that we did not re-train the parameters learned from the CUHK
datasets.

detection responses. In order to find new object hypotheses,
we search continuous and consistent detection responses hav-
ing both overlapped areas and similar sizes within temporal
sliding windows, which are not already associated with any
tracklets in LC-and HC-association stages. In our implementa-
tion, we link detections when the ratio of an overlapped area
over a union area of detections is more than 0.5. If more than
two detections are overlapped in neighboring frames, we
associate them with the maximum ratio based on the greedy
algorithm [34]. For reducing false initiated tracks, we generate
a new track with associated hypotheses only when the object
hypotheses are associated in at least five subsequent frames.
Dataset: For performance evaluation, we use the follow-
ing MOT datasets: CAVIAR [47], VS-PETS 2009 (PETS) [48],
ETH Mobile scene (ETHMS) [46], and Town Centre [49].
Although the CAVIAR dataset contains 26 sequences, only
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Fig. 10. Transfer learning evaluation on the ETHZ dataset.
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Fig. 12. From top to bottom, inputimages and mid-level features extracted
from CP1 and CP2 layers of our appearance model are shown.
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Fig. 13. Detections (black circles) and estimated trajectories of a single
object (color lines) for the PETS-L1 sequence over 520 frames.

20 sequences were used as in [4] to ensure fair comparison
with other methods. In the PETS dataset, tracking sequences
S2.L1 and S2.L2 were used. In the ETHMS dataset, the
SUNNY DAY and BAHNHOF sequences of street scenes
taken by a moving camera were selected.

Detection and Ground Truth. For a fair comparison, we use
the same detections and the ground truth when evaluating
performance of different methods. For VS-PETS 2009,
ETHMS, CAVIAR and Town Centre datasets, we obtain
detections and ground truth from [50], [4], [7], and [49],
respectively.

(k) PETS-L1 #732 (1) PETS-L2 £86

Low SN Fracklet Confi

(m) ETH-Bahnhof #585

(b) Tracking results with the online learned deep models (p1)

Fig. 14. Tracking results: IDs (7, 21) are changed by occlusions in the top
rows, but IDs (9, 18) correctly kept in the bottom rows.

System Parameters. All parameters have been determined
experimentally, and remained unchanged for all datasets.
From an extensive evaluation, we find that most parameters
do not affect the overall system performance significantly.
In the affinity model in Eq. (4), all parameters (i.e., positions,
sizes and velocities) are automatically determined by
tracking results except for OF and O, which are set to
diag[16232%]. The normalized distance with parameter
¢ = 25 is used for the appearance affinity. The same thresh-
old # = 0.4 is used for the HC- and LC- association.

6.3 Performance Evaluation

Evaluation Metrics. We use the common CLEAR MOT [51]
consisting of multiple metrics. The multiple object tracking
precision (MOTP T) evaluates the intersection area over the
union area of bounding boxes. The multiple object tracking
accuracy (MOTA 1) calculates the accuracy composed of false
negatives, false positives, and identity switching (IDS |). In
addition, the metrics used in [4], [7] are computed: the num-
ber of trajectories in the ground truth (GT), the ratio of mostly
tracked trajectories (MT 1), the ratio of mostly lost trajectories

(n) ETH-Sunny #349

dence ) +ih

(0) CAVIAR #797

Fig. 15. Tracking results for the PETS, ETHMS, CAVIAR and 2015 MOTChallenge datasets. At each frame, tracklets with different confidence are
illustrated with different color boxes. The identities of tracked objects are marked in black. (Refer to the supplementary material, available online for

more results.)
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TABLE 2
Performance Comparison with Other MOT Systems
Dataset Method Setting MOTP1 MOTAT GT MT] PT ML| IDS| FG| RECT PRE] FAF]|
* PIRHMPT [4] Batch - - 19 7890% 21.10% 0.00 % 1 23 89.50% 99.60 % 0.02
* OLMOAP [5] Batch - - 19 8950% 10.50 % 0.00 % 0 9 9180% 99.00% 0.05
PETS Energy Min. [6] Batch 8020% 90.60% 23 9130% 435% 435% 11 6  9240% 98.40% 0.07
S2L1 TINF [52] Batch 63.12% 9004% - 9500% 5.00% 0.00% 3 - - -
Conf. Map [9] Online 5630% 79.70% - - - - - - - - -
* proposed (pl - with all) Online 80.54%  90.96 % 19 100.00% 0.00%  0.00 % 4 8 9530% 94.66% 0.31
NOMT [25] Batch 70.50 % 5340% 42 1430% 7620% 950% 142 208 - - -
MHT-DAM [26] Batch 6140% 5920% 42 2381% 7143% 476% 120 162 - - -
PETS LP-SSVM [53] Batch 7050 % 4150% 42 710% 7620% 16.70% 212 249 - - -
S21.2 MDP [24] Online 69.80% 47.80% 42 1430% 78.60% 7.10% 206 362 - - -
* proposed (pl - with all) Online 7027 % 50.77 % 43 4286% 57.14% 0.00% 113 173 64.42% 83.69% 2.96
* DP [27] Batch - - 125 50.20% 39.90% 9.90 % 4 143 6740% 91.40% -
ETHMS * PIRHMPT [4] Batch - - 125 5840% 33.60% 800% 11 23 7680% 86.60% -
(Bahnhof * Online CRF [7] Batch - - 125 68.00% 24.80% 720% 11 19 79.00% 9040% -
Sunny * DC-CREF [50] Batch - - 125 6640% 2540% 820% 57 69 7730% 8720% -
Day) TBD [13] Online - - 125 6240% 29.60% 8.00% 45 69 7870% 8550% -
* proposed (pl - with all) Online 69.93%  73.26 % 125 76.00% 1920% 4.80% 33 39 85.06% 8827 % 0.77
Town * Stable tracking [49] Online 77.20% 61.20% 230 60.87% 2739% 11.74% 292 230 7890% 82.00% 2.75
Centre * proposed (pl - withall) Online 76.50 % 64.40 % 230 63.04% 2739% 9.57% 164 226 83.90% 81.30% 3.05
Two-steps [22] Online — — 140 8429% 1214% 357% 14 0 81.80% — 0.136
CAVIAR *PRIMPT [4] Batch — — 143 86.00% 13.30% 0.70 % 4 17 88.10% 96.60 % 0.082
(20Seq.) * OLMOAP [5] Batch — — 143 89.10% 10.20% 0.70 % 5 11 9020 % 96.10 % 0.095
* OLDAM][29] Batch — — 143 84.60% 1470% 070% 11 11 89.40 % 96.90 % 0.085
* proposed (pl - withall) Online 89.07% 8825% 143 9215% 7.85% 0.00 % 8 7 9226% 9627 % 0.084

For each dataset the Best Results are Marked in Red Color and Bold. In addition, the systems evaluated with the same detections and ground truth used in

our system are marked with an asterisk * .

(ML |), the ratio of partially tracked trajectories (PT), ie., ,
1 — PI' — ML, the number of track fragments (FG |), recall
(REC 1), precision (PRE 1), and false alarms per frame (FAF
1). Here, T represents that higher scores indicate better results,
and | denotes that lower scores indicate better results.

Comparison of Data Association. A comparison between
different versions of the proposed system is given in Table 1.
Based on the framework shown in Fig. 3, we have imple-
mented the proposed system (p1) with all proposed algo-
rithms and compare it with the systems (al)-(a4) using
different association algorithms in Table 1-A. The details of
each system are described as follows:

(al)  MOT system without LC-association;

(@2)  MOT system without HC-association;
(@3)  MOT system with greed association [10];
(a4) MOT system with DA-TEP [14];

(p1)  MOT system with all proposed algorithms.

In the greedy bipartite association [10], we construct an
association score matrix between tracklets and detections
using the same affinity model presented in Section 3.2.
Then, the pairs having the minimum score in the association
matrix are selected in ascending order until no further valid
pair is available. In the data association with track existence
probability (DA-TEP) [14], we compute the association
matrix by evaluating the posterior association probability
for each tracklet-to-detection pair, and determine optimal
matching pairs minimizing a total cost of the matrix using
the Hungarian algorithm.

From the results of (p1) and (al)-(a4), we can see the
effect of our data association algorithm. As expected, the

proposed system (p1) truly shows the better performance
for the most metrics. In particular, our full system (p1)
noticeably reduces IDS and FG rates and increases MT
rate against the system (al). Fig. 13 also supports this
analysis: with the LC-association, longer trajectories are
built by linking fragmented trajectories. Furthermore, the
comparison between (p1) and (a2) verifies that the associ-
ation accuracy of our system is improved when using
HC-& LC-association together, because the HC-associa-
tion reduces the matching ambiguity in the global associ-
ation. The systems (p1) and (a4) show the better results
than (a3). This result implies that exploiting the reliability
of tracklets as well as the likelihood (or affinity) can
improve the data association accuracy.

Comparison of Appearance Learning. Table 1-B show the
results of systems with difference appearance learning;:

(b1)  MOT system without online-learned appearance models;®
(b2) MOT system with incremental LDA [12];
(b3)  MOT system with our deep model without OTL;

By comparing our systems (p1) and (al), we can see that
the proposed appearance learning greatly enhances the per-
formance for all the metrics. The comparison between the
system (pl) and systems (b2) and (b3) proves that we can
further reduce the IDS and FG rates when using our deep
and OTL. Fig. 14 shows IDs of objects are correctly main-
tained using our appearance learning. These results indicate

3. As an appearance model, we use the RGB color histogram with
192 bins, and compute appearance affinity using the Bhattacharyya
distance.
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TABLE 3
Performance Comparison with Other MOT Systems on the 2015 & 2016 MOT Challenge Benchmark

Benchmark Method Setting Detector MOTA T MOTP T FAF| MT1 PT ML | FP| FEN| IDS| FG|
proposed (pl - with all) Online Private 51.30% 7420% 12 3630% 4150% 2220% 7110 22271 544 1335

proposed (p1 - with all) Online Public 32.80% 70.70 % 0.9 9.70 % 48.70 % 42.20 % 4983 35690 614 1583

2015 MDP-SubCNN [24] Online Private 4750 % 74.20 % 1.5 30.00% 51.40% 18.60% 8631 22969 628 1370
MOT MDP [24] Online Public 30.30% 71.30 % 1.7  13.00% 48.60% 38.40% 9717 32422 680 1500
Challenge NOMTwSDP [25] Batch  Private 5550 % 76.60 % 1.0 39.00% 3520% 2580% 5594 21322 427 701
MHT-DAM [26] Batch  Public 3240% 71.80 % 1.6 16.00% 40.20% 43.80% 9064 32060 435 826

SiameseCNN [54] Batch  Public 29.00% 7120% 0.9 850% 43.10% 4840% 5160 37798 639 1316

proposed (pl - with all) Online Public 43.90% 74.70 % 1.1 1070% 4490 % 4440% 6450 95175 676 1795

EAMTT [55] Online Public 3880% 75.10 % 1.4 790 % 43.00% 49.10% 8114 102452 965 1657

2016 OVBT [56] Online Public 3840% 7540 % 1.9 750 % 4520% 47.30% 11517 99463 1321 2140
MOT NOMT [25] Batch  Public 4640% 76.60 % 1.6 1830% 4030% 41.40% 9753 87565 359 504
Challenge MHT-DAM [26] Batch  Public 4290% 76.60 % 1.0 13.60% 3950% 46.90% 5668 97919 499 659
LINF1 [57] Batch  Public 4140% 74.80 % 1.3 11.60% 3710% 51.30% 7896 99224 430 963

The results are sorted according to the setting and MOTA score. Due to the page limit, we present the results for recent publications. (More results can be found

in the Mot Challenge website.)

TABLE 4
Performance Comparison with Different Deep Learning Algorithms Using Same Detections and Ground Truth on PETS,
ETHMS and Town Centre Datasets

Dataset Method MOTP1T MOTAT GT MT1 PT ML| IDS| FG| REC?T PRET FAF| Speed (spf)
Average Siamese deep network [17] 71.80% 6280 % 417 5470% 3810% 720% 643 1268 77.80% 8470% 2.16 1.23
Results  Deep learning tracker [30] 7220% 6440 % 417 53.50% 38.60% 7.90% 501 1188 7730% 8410% 1.87 10.85

pl - with all 7431 % 69.85% 417 66.43 % 2686% 6.71% 314 446 8217 % 86.98% 1.78 1.20

For each metric, the Best Results are Marked in Red Color and Bold (Refer to the supplementary material, available online for more results).

that the proposed appearance learning is beneficial for dis-
criminating appearances of objects.

The more tracking results are shown in Fig. 15. Although
the objects are frequently occluded and their appearances
and motions are changed with time, our system robustly
tracks the objects while keeping their original IDs.

Comparisons with Other Systems. Table 2 shows a quantita-
tive comparison between the proposed system (pl) and
other MOT systems. Overall, our system achieves better
performance in terms of MOTP and MOTA. Although we
could not find the MOTP and MOTA for the ETHMS and
CAVIAR datasets in other literature, other metrics show the
robustness of our system. When compared to other online
tracking systems [8], [9], [13], [22], [24], [49], our system (p1)
is far superior to their performance for all metrics.

Compared to the performance of the recently proposed
batch tracking systems [5], [6], [7], [25], [26], [50], [53], our
system (p1) is still competitive. Notably, this improvement
is achieved without using future frame information and
without employing multiple (color, shape, and/or texture)
features (c.f. [4], [5], [7], [9D).

Our system produces slightly more IDS and FG than
some batch systems for the ETHMS dataset. The reason of
the more IDS and FG is that occlusions are more frequently
occurred in the ETHMS dataset when persons are passing
by each other. Furthermore, in many cases, tracked objects
are fully occluded by other objects since the dataset is cap-
tured from the frontal view cameras on the ground plane.*

4. Even though our tracking system successfully recovers its original
ID in the next frames, the IDS number can be increased since we do not
correct the ID of the previous frames as discussed in Section 5.

However, our system is still comparable to other batch sys-
tems, and achieves the best performance in terms of MT
and ML. It implies that our system can robustly construct
tracks under challenging conditions.

MOTChallenge Benchmark Evaluation. We further evaluate
the proposed system (p1) on 2015 & 2016 MOTChallenge
benchmark [51], [58] for more comparison with other systems.
Table 3 shows the performance of different tracking systems
on the challenge test datasets. In this experiment, we have
tuned our system parameters with the provided training data-
sets only, and used the same parameters as described in Sec-
tion 6.2 except O and O” — we set O and O” to diag[32264?
for the AVG-TownCentre sequence due to its low frame-rate.
In 2015 MOTChallenge, we evaluated our system with the
public benchmark detections and private detections provided
by [25], whereas we only evaluated it with the public bench-
mark detections in 2016 MOTChallenge.

As shown in Table 3, our system achieves the competi-
tive performance with other state-of-the-art systems, and
the best scores for the most metrics among all online
systems. This shows that our system can produce high per-
formance for many different scenarios, and proves the
robustness of our system.

Comparisons with Other Deep Learning Methods. To show
effectiveness of our deep appearance learning, we compare
our method with other deep learning methods [17], [30]. We
implemented several systems by incorporating other deep
learning methods into our MOT framework and exploiting
them for appearance models. Table 4 shows their perfor-
mance for several datasets. For a fair comparison, we use
the codes open to the public for [17], [30], and use the same
training dataset and network structure.

Authorized licensed use limited to: Inha University. Downloaded on November 06,2020 at 08:22:54 UTC from IEEE Xplore. Restrictions apply.



BAE AND YOON: CONFIDENCE-BASED DATA ASSOCIATION AND DISCRIMINATIVE DEEP APPEARANCE LEARNING FOR... 609

Our system (p1) shows the best performance for the most
metrics. In particular, (p1) yields greatly improved the rates
of MT, IDS, FG and REC. For the complexity of appearance
learning, our method is more efficient than [17], [30]. Our
system (p1) is much (about 9 times) faster than [30] because
N deep networks are required in the deep learning tracker
[30] for given N objects, while only one network is trained
and updated in our method.

7 CONCLUSION

In this paper, we have proposed a robust online multi-object
tracking method based on tracklet confidence and the dis-
criminative deep appearance learning. We evaluate the
tracklet confidence using the detectability and continuity of
a tracklet, and then build optimal tracklets by sequentially
linking tracklets and detections using the proposed high
and low confidence association according to their confi-
dence. Here, for more accurate and robust association
between tracklets and detections, we learn the discrimina-
tive deep appearance model from a large dataset with the
new energy function, and adapt the learned deep model by
using online transfer learning for improving the discrimina-
bility between objects in specific sequences during tracking.

We have proved that the proposed methods lead to the
noticeable performance improvement through extensive
experiments. Since we have used a simple linear motion
model, learning nonlinear motions [5] and relative motions
[7] would be beneficial in order to further improve the
description ability of our system.
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