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Abstract: The authors address an automated multi-target tracking (MTT) problem. In particular, our study is focused on robust
data association considering an additional feature and the reliable track management by avoiding track duplications. As the
additional feature, the amplitude information is combined with position measurements to improve the performance of the data
association so as to effectively distinguish target-originated measurements from clutters. Because of its form of signal-to-noise
ratio (SNR), which is often fluctuated according to targets’ aspect and effective radar cross section, the usage of the
amplitude information is not straightforward. To reduce the certain level of uncertainty of the SNR, the authors propose the
SNR estimation algorithm. Moreover, the authors avoid the track duplication problem to achieve the reliability of track
maintenance. Specifically, the authors solve the problem by exploiting well-known mean shift algorithm to merge
duplications into appropriate clusters. Simulation results demonstrate the effectiveness and high estimation accuracy of the
proposed MTT filter compared to existing methods.
1 Introduction

The aim of this paper is to design an automatic multi-target
tracking (MTT) system using sensor measurements under
cluttered environment. The crucial tasks of the automatic
MTT system are composed of an initiation of tentative
tracks, an estimation of target states and a track
management based on measurements with some prior
knowledge: dynamic and measurement model, target
detection probability, clutter distribution and so on.

In the cluttered environment, sensor receives mixed
observations reflected from targets and clutters [1].
Generally, to distinguish target observations from clutters,
thresholding algorithm such as constant false alarm
detection [2] is exploited and then the refined observations
which contain the kinematic information, for example
range, bearing and velocity of targets, are used as inputs of
the tracker. However, the clutters could not be completely
removed in the detection process because of the difficulty
of finding the optimal threshold. Moreover, observations
from clutters would dominate the target observations which
lead to false positives. Hence, to achieve more accurate
automatic MTT with uncertain kinematic measurements, the
most important problem is how to correctly identify the
target-originated measurement and exclude the clutter. This
is known as a data association problem.

A vast amount of work has been published on MTT filters
related to the development of data association algorithm
with kinematic information [1, 3–8]. Joint probability data
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association (JPDA) [1] and multiple hypothesis tracking
(MHT) filters [3] are the most well known of them. However,
the filters have limitations when targets are closely spaced or
heavy clutters are distributed in the vicinity of targets. In these
cases, the reason is because the kinematic information is not
sufficient to correctly assign measurements to the
corresponding tracks. To this extend, some improvements can
be possible if we additionally consider another type of feature
that is distinctive in such situations.

Practical applications of radar, sonar and acoustics provide
kinematic properties as well as non-kinematic information,
for example, amplitude. The main focus of this paper is to
utilise the non-kinematic information with kinematic
information to improve the data association. However, we
should be careful in dealing with the amplitude information
because it is not straightforward to obtain the explicit model
which describes the direct relationship between the target
kinematic and the amplitude information. This implies that
exploiting amplitude information to estimate target state can
be challenging. Instead of using the amplitude in the target
state estimate, it is rather effective to utilise the common
assumption that the amplitude information of a target is
stronger than that of clutters to the data association process.

Based on this finding, the paper [9] demonstrated that the
amplitude information can be exploited in the data
association process with the kinematic one. Thus, we adopt
the amplitude information to enhance the performance of
the data association rather than the estimation of target state
with complex modelling.
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The non-kinematic information can be incorporated in the
data association process with a likelihood ratio between
target and clutter amplitude likelihood functions. These
likelihood functions are based on probability density
functions (pdfs) of target and clutter amplitudes. Assume
that the received signal is affected by Rayleigh fading, pdf
of the amplitude becomes Rayleigh distribution according
to the target signal-to-noise ratio (SNR) [9] which should
be given a priori. This assumption is known to be
appropriate for scan-to-scan slow fluctuation (Swerling I)
and pulse-to-pulse fast fluctuation (Swerling II) models
[10, 11], and they are mostly used in the probabilistically
modelling of returns from aircrafts.

However, most of the developed filters using the non-
kinematic information have a strict assumption that the
target SNR is known without any filtering which is not
realistic [9, 12, 13]. Generally, it is not easy to determine
the target SNR in advance since it is often randomly
fluctuated according to target’s aspect or effective radar
cross section [10, 14]. To overcome this limitation, we
propose a novel algorithm to estimate the unknown SNRs
of multi-target based on the sequential Monte Carlo (SMC)
method [15–17]. Once estimation of targets’ SNRs is
available, we can employ it with the kinematic information
to enhance the performance of data association in MTT.

In the automatic MTT, another important task is a reliable
track management to prevent track duplications. Track
duplications usually occur in the track initiation process
especially when several consecutive detections appear near
the true track. In particular, the duplications are resulted
when automatically initialising tentative tracks [18] without
initial true target information, for example target’s location
and appearance time. In this case, the duplication brings
about significant degradation of MTT performance in terms
of accuracy and time complexity. To alleviate the
duplications, we classify the duplicated tracks using the
mean-shift [19]. Then, we determine a tentative track of
each group and its tracking components using our own rule
which will be specifically discussed in Section 4.4.

Based on robust data association with additional non-
kinematic information and reliable track management, we
implement the automated MTT system. The proposed
system shows better performance especially for a non-linear
model in heavy cluttered environment and the situation
where the target number is frequently changing. Through a
challenging MTT example, the proposed MTT filter is
compared and analysed with a different set-up.

The remainder of the paper is organised as follows: Section
2 presents the dynamic system, the non-linear measurement
model and some notations. In Section 3, we give
preliminaries for probabilistic amplitude modelling with
known SNR. Subsequently, the SNR estimation algorithm
via SMC method is demonstrated.

Our overall automated MTT system is designed including
track management in Section 4. To evaluate the efficiency
and robustness of proposed system, a numerical example
is tested in Section 5. Finally, conclusions are drawn in
Section 6.

2 Problem statement

A linear discrete-time dynamic system model of multiple
targets is represented as follows

xt
k = Fkxt

k−1 + vt
k , k = 1, 2, . . . (1)
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where xt
k = [xt

1,k xt
2,k xt

3,k xt
4,k ]T [ <4 denote tth target

kinematic states at time instant k xt
1,k and xt

3,k represent x
and y coordinate position, and xt

2,k and xt
4,k describe

velocities along with x and y coordinate, respectively. Fk is
a transition matrix for the constant velocity model and
vk � N (0, Qt

k) is normally distributed acceleration noise of
zero mean and white Gaussian. We assume that the number
of target is unknown since the target quantity may change
according to appearance of new targets and disappearance
of existing targets. The initial target states xt

0 are assumed
to be Gaussian xt

0 � N (mt
0, Pt

0), m0 ¼ E(x0) and P0 =
cov{xt

0, xt
0}.

When a target is assumed to appear, then a track t is
initiated to sequentially estimate the target state. Here, the
number of tracks is not perfectly matched with the number
of true targets in practical situations because of the false
tracks initiated by clutters.

At time instant k, a set of measurements containing
kinematic and non-kinematic components is received. The
set includes returns from both targets and clutters, but their
origins are not known. Notations for measurements (i.e.
target and clutters) are given as follows:

† Zk – the sequence of kinematic (range and bearing) and
non-kinematic (amplitude) measurement sets up to time k,
that is, Zk ¼ [Zp,k Za,k]T, Zp,k ¼ [Zr,k Zu,k]T;
† Zr,k, Zu,k and Za,k – respectively, the sequences of range,
bearing and amplitude measurement sets up to time k,
that is; Zr,k = {Zr

1, . . . , Zr
k}, Zu,k = {Zu

1 , . . . , Zu
k } and Za,k =

{Za
1 , . . . , Za

k };
† Zr

k , Zu
k and Za

k – respectively, a set of range, bearing
and amplitude measurements at time instant k, that
is, Zr

k ={zr
1, . . . , zr

i }Zu
k ={zu1, . . . , zui } and Za

k ={za
1, . . . , za

i },
i = 1, . . . , mk , where mk is the number of detected
measurements at time k;
† Zt

k – a set of measurements in a validation gate of track t at
time instant k, Zt

k = {zt1,k , . . . , zti,k}, i = 1, . . . , mt
k ;

† zti,k – the ith gated measurement of track t with
range, bearing and amplitude components, that is,
zti,k = [zr

i,k zui,k za
i,k]T [ <3.

Note that zti,k is the ith measurement of Zt
k which is located

within the validation gate of track t. We assume that each
target detection is obtained according to the known target
detection probability Pt

D, and the detection falls inside the
gate with gate probability Pt

G. We adopt the same gating
technique already utilised in probabilistic data association
filter (PDAF) [1] to reduce the complexity of the track-to-
measurement assignment.

Using a gating technique, a set of validated measurement
is represented as

Zt
k = {zti,k :(vti,k)T(St

k )−1(vti,k)≤g}= {zt1,k,...,z
t
i,k}, i= 1, . . . , mt

k

(2)

where g is the gate threshold and mt
k is the number of

measurements in the gate of track t at time instant k.
vti,k = zti,k − �ztk is a zero-mean Gaussian residual with
covariance St

k (17). A predicted measurement �ztk is
calculated by �ztk = hk (x̂k|k−1), where x̂tk|k−1 = Fk x̂tk−1|k−1 is
the predicted estimates.

We consider that a target-originated measurement is
described by a non-linear measurement model that includes
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the range, the bearing, and the amplitude information as

zi,k = hk(xt
k) + wk

=

�����������������
(xt

1,k)2 + (xt
3,k )2

√
tan−1 xt

3,k

xt
1,k

( )

at
k

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦+

wr,k

wu,k

0

⎡
⎢⎣

⎤
⎥⎦, k = 1, 2, . . . (3)

where the range noise wr,k � N (0, s2
r ) and the bearing

noise wu,k � N (0, s2
u) are uncorrelated Gaussian noise

sequences. We assume that the ith amplitude measurement
za

i,k is independent from ith kinematic measurements
zp

i,k = [zr
i,kzui,k]T, which implies that

p(zp
i,k , za

i,k |Zk) = p(zp
i,k |Z

p,k)p(za
i,k |Za,k ), Zk = [Zp,k Za,k ]T

(4)

In the next section, the amplitude measurement from target or
clutter is discussed.

3 Probabilistic amplitude information
modelling

In this section, we explain how the amplitude information can
be described with a probabilistic model by relating with the
target SNR which is usually assumed to be known. To
apply the amplitude information in a more practical case,
we propose an SNR estimation algorithm.

3.1 Amplitude likelihood function

Let us assume that the amplitude a is the output of a bandpass
matched filter followed by an envelope detector. The
propagation and attenuation of the amplitude a are
modelled with Rayleigh distribution as given in [9].
Without loss of generality, the time index k is omitted. Note
that the target SNR is defined as a power ratio which is an
expected power of received signal over a normalised
background noise power. We denote d as the target SNR
and assume that clutter SNR is equal to 0 dB. It means that
the expected power of the clutter is considered as the power
of back ground noise. In this paper, we assume that the
amplitude a is treated as the realisation of Rayleigh
distributed random value given the target SNR d.

Let us consider the amplitude a exceeds a detection
threshold DT; a ≥ DT. If the amplitude a is originated from
a target, then the pdf of the a is given as

pDT
1

(a, d) = 1

PD

p1(a, d) = a

1 + d
exp

DT2 − a2

2(1 + d)

( )
,

p1(a, d) = pDT=0
1

(a, d)

PD =
∫1

DT

p1(a)da = exp
−DT2

2(1 + d)

( ) (5)

Otherwise, originated form clutters, whose pdf of the
274
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a is given as

pDT
0 (a) = 1

PFA

p0(a) = a exp
DT2 − a2

2

( )
,

p0(a) = pDT=0
0

(a), PFA =
∫1

DT

p0(a)da = exp −DT2

2

( )
(6)

where PD and PFA are target and clutter detection
probabilities. When the target SNR d is given, amplitude
likelihood functions of the target and the clutter are
calculated as follows

gDT
a (a|d) = pDT

1 (a, d) (7)

cDT
a = pDT

0 (a) (8)

Once gDT
a (a|d) and cDT

a are provided, we can exploit the
amplitude information to enhance the track-to-
measurement association (see Section 4.2 for details).

3.2 Unknown SNR estimation

As mentioned in the Introduction, the assumption of knowing
the target SNR is not feasible in practical cases because the
SNR is fluctuated according to properties of the target. To
exploit the amplitude without the assumption, we propose
to estimate an unknown target SNR based on the SMC
approach [15–17]. For track t, a set of amplitude
measurements passed through the gating (2) and the
amplitude thresholding, that is, ai,k ≥ DT, becomes

Za
k = {a1,k , . . . , ai,k}, i = 1, . . . , mt

k (9)

where ai,k is the ith amplitude measurement in the gate whose
pdf follows Rayleigh distribution with the unknown SNR dt

i,k .
We assume that the possible target SNR dt

i,k lies in a
potential SNR interval, that is, dt

i,k [ [d1, d2]. d1 and d2 are
minimum and maximum values of the specified boundary.
We consider the pdf of dt

i,k to be uniform within certain
boundary [d1, d2]. Then, the unknown target SNR dt

i,k can
be written as

p(dt
i,k) =

1

d2 − d1

, d1 ≤ dt
i,k ≤ d2, i = 1, . . . , mt

k

0, otherwise

⎧⎨
⎩

(10)

The unknown SNR dt
i,k can be estimated with N samples, that

is, d1
k , . . . , dN

k , and corresponding weight wl
k . We have

d̂t
i,k =

∑S

l=1

wl
kdl

k , i = 1, . . . , mt
k (11)

where dl
k is lth sample distributed according to p(dt

i,k) (10),
and S is total number of samples. The weight wl

k is
proportional to amplitude likelihood function pDT

1 (ai,k , dl
k ),

that is

wl
i,k / pDT

1 (ai,k , dl
k), i = 1, . . . , mt

k , l = 1, . . . , S (12)

Now, we can utilise the estimated SNR d̂t
i,k to compute a
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target amplitude likelihood function gt
a(a|d) (7) without the

knowledge of the target SNR as a given parameter.
Fig. 1 demonstrates the estimation result for five targets for

different SNRs (10, 15, 20, 25 and 30 dB) using the proposed
algorithm. The boundary [d1, d2] is taken with between 0 and
30 dB. One hundred samples are randomly generated within
the boundary. We observe that each estimated value
asymptotically converges to true SNRs. Furthermore, we
calculate the root mean square errors (RMSEs) for each true
SNR (dB) dk and its corresponding estimated SNR (dB) d̂k
based on 500 Monte Carlo simulations

RMSE (dB) =

�����������������������
1

500

∑500

s=1

‖d̂s,k − ds,k‖2

√√√√
We show that the errors are rapidly converged for all cases.
Therefore these results verify that our SNR estimation
algorithm can effectively estimate the unknown SNR.

In the proposed automated MTT algorithm, we utilise
the estimated SNR to enhance the data association between
the targets and the clutters as described in the following
section.

4 Automated MTT with amplitude
information

In this section, our automated MTT system is proposed
including the track initialisation, the filtering, the data
association and the track management. The automatic track
initialisation can be achieved using the two-step initialisation
(TSI) method. The converted measurement Kalman filter
(CMKF) is introduced as a non-linear tracking filter. As a
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 4, pp. 272–281
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main contribution, we present an improved data association
algorithm with the amplitude information based on the
estimated SNR. Then, we show that each track can be
managed according to the track existence probability. To deal
with tracker duplication in MTT, we propose a novel track
merging algorithm using the mean shift. Following
subsections subsequently describe each component of the
proposed system and the overall algorithms are summarised
for the brief review of our automated MTT system.

4.1 Unbiased converted measurement

In this paper, the CMKF [20] is exploited to estimate states
of targets in the non-linear measurement system. One main
reason of this choice is to account for the practical
implementation by reducing the computation complexity.
We briefly introduce the CMKF equations as follows. For
simplicity, the track index t and measurement index i are
omitted in this section.

CMKF uses a polar-to-Cartesian transformation to convert
the polar coordinate measurements zp

k = [zr
k zuk]T into the

Cartesian coordinate zc
k = [Px

k Py
k]T

Px
k = rk cos uk ; Py

k = rk sin uk , rk = zr
k and uk = zuk

(13)

The error covariance for the unbiased converted
measurements is used as given in [20] (see (14)).

where s2
r is the range error variance and lu is the

compensation factor; lu = exp (−s2
u/2).

Based on the polar-to-Cartesian transformation, the non-
linear measurement model (3) can be rewritten with the
Fig. 1 Estimation result for five targets

a True and estimated SNR values with (11). The dotted lines represent true SNRs for 10, 15, 20, 25 and 30 dB. The lines show estimated results for each SNR
b RMSEs between true and estimated SNRs are displayed with different types of markers

Rc
k =

R11
k R12

k

R21
k R22

k

( )
,

R11
k = (l−2

u − 2)r2
k cos2(uk ) + 0.5(r2

k + s2
r )(1 + l4

u cos(2uk ))

R12
k = (l−2

u − 2)r2
k cos(uk) sin(uk ) + 0.5(r2

k + s2
r )l4

u sin(2uk )

R21
k = R12

k

R22
k = (l−2

u − 2)r2
k sin2(uk) + 0.5(r2

k + s2
r )(1 − l4

u cos(2uk))

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(14)
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unbiased converted measurement model as

zk =
zc

k

at
k

[ ]
= Hkxt

k

at
k

[ ]
+

wx,k

wy,k

0

⎡
⎢⎣

⎤
⎥⎦

k =
1 0 0 0

0 0 1 0

[ ]
, Hk = 1, 2, . . .

(15)

where wx,k � N (0, R11
k ) and wy,k � N (0, R22

k ) and are
Gaussian distributed position noises along with x and y
coordinates, and R11

k and R22
k are calculated by (14).

Kalman predication and update step at time instant k are
described in (16) and (17)

† Prediction step

x̂k|k−1 = Fk x̂k−1|k−1

Pk|k−1 = FkPk−1|k−1FT
k + Qk

(16)

† Update step

Sk = HkPk|k−1HT
k + Rc

k

Kk = Pk|k−1HT
k S−1

k (17)

xk|k = x̂k|k−1 + Kk(l−1
u zc

k − Hkx̂k|k−1), zc
k = [Px

k Py
k]T

Pk|k = (I − KkHk)Pk|k−1

4.2 Data association with amplitude information

To implement the data association in our automated MTT, we
adopt the linear multi-target integrated probabilistic data
association (LMIPDA) approach [21]. The main reason is that
the LMIPDA simply calculates the data association
probability to avoid the exponentially growing combinatorial.
This filter exploits a modified scatter measurement density by
considering possibilities that the measurements may be
originated from other targets or clutters. As a result, the
LMIPDA has reasonable computational complexity by
ignoring the joint track-to-measurement assignment of JPDAF
[1] or MHT [3]. For more details on the LMIPDA refer to [21].

Based on the LMIPDA framework, we propose to include
the amplitude information to improve the data association by
incorporating the kinematic and amplitude likelihood
functions. A new algorithm is called LMIPDA-Amplitude
Information (LMIPDA-AI). For the unknown SNR case, the
amplitude likelihood function can be effectively calculated
using our SNR estimation algorithm. The proposed
LMIPDA-AI could provide the high accuracy and the
robustness especially when targets are closely spaced or
enormous clutters exist.

To derive the LMIPDA-AI, let us denote some notations
for random events of track t and measurement i.

xtk : The event that track t exists at time instant k.
xti,k : The event that the ith measurement zti,k is associated with
track t.
xt0,k : The event that none of the gated measurements are not

associated with track t.
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In addition, clutter measurements are modelled with
properties as follows:

1. The number of clutter measurement is according to a
homogeneous Poisson process with a known spatial clutter
density rc.
2. The clutter is uniformly distributed in the validation
region V.

For each gated measurement zti,k , we define the clutter
density ri,k including a kinematic component and the a
amplitude component as

ri,k ; r(zti,k) = r(zc,t
i,k )r(za,t

i,k ) = rc
i,k · cDT

k (ai,k), i = 1, . . . , mt
k

(18)

where the kinematic clutter density rc
i,k = rc is a known

constant by the homogeneous assumption (1) and cDT
k (ai,k)

is (8).
Given the converted measurement sequence sets

Zk ¼ [Zc,k Za,k]T, the likelihood of the zti,k = [zc,t
i,k za,t

i.k ]T

given track t can be defined based on independent
assumption (4)

L
t
i ; P(zti,k |xtk , Zk−1) = P(zc,t

i,k |x
t
k , Zc,k−1)P(za,t

i,k |x
t
k , Za,k−1)

= L
c,t
i,k L

a,t
i,k , i = 1, . . . , mt

k (19)

where the kinematic likelihood function L
c,t
i,k and the non-

kinematic likelihood L
a,t
i,k become

L
c,t
i,k = N (vti,k , St

k ) = exp − 1

2
(vti,k)T(St

k )−1vti,k

( )
,

vti,k = zc,t
i,k − �zc,t

k , �zc,t
k = Hkx̂tk|k−1

L
a,t
i,k = gDT

a (ati,k |d̂t
i,k), i = 1, . . . , mt

k

(20)

Here residual vti,k and its covariance St
k are yielded with (16)

and (17). Estimated target SNR d̂t
i,k is given by (11).

In LMIPDA-AI, a priori data association probabilities Pt
i,k

means that zti,k is associated with track t and approximately
yielded with the amplitude information as follows

Pt
i,k ; P(xti,k , xtk |Zk−1) ≃ Pt

DPt
GP(xtk |Zk−1)

L
t
i,k

ri,k

/
∑mt

k

i=1

L
t
i,k

ri,k

,

Lt
i,k = L

c,t
i,k L

a,t
i,k , ri,k = rc

i,k · cDT
k (ai,k) (21)

where Pt
D and Pt

G are target detection and gate probabilities.
P(xtk |Zk−1) is the propagation of target existence probability
P(xtk−1|Zk−1) and represented with Markov chain one model as

P(xtk |Zk−1) = D11P(xtk−1|Zk−1)

+ D21(1 − P(xtk−1|Zk−1)) (22)

with transition probability

D11 ; P(xtk |xtk−1) and D21 ; P(xtk |x̃tk−1)

where x̃tk denotes non-existence of the track at time k.
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Using (19) and (21), the posterior probabilities of target
existence can be derived as follows

P(xtk |Zk ) = (1 −Ct
k ) · P(xtk |Zk−1)

1 −Ct
k · P(xtk |Zk−1)

,

C
t
k = Pt

DPt
G 1 −

∑mt
k

i=1

L
t
i,k

Ft
i,k

( )
, L

t
i,k = L

c,t
i,k L

a,t
i,k (23)

where Ft
i,k is a priori scatter measurement density of

measurement zti,k using (18), (19) and (22) becomes

Ft
i,k = ri,k︸︷︷︸

clutter

+
∑Mk

s=1
s=t

Ls
i,k

Ps
i,k

1 − Ps
i,k︸����������︷︷����������︸

other target

,

ri,k = rc
i,k · cDT

k (ai,k), L
s
i,k = L

c,s
i,k L

a,s
i,k , i = 1, . . . , mt

k

(24)

Here Ft
i,k is the probability that the measurement zti,k is

originated from the scatterer, that is, clutter or other target:
the first term and second term separately represent that the
probability zti,k originated from a clutter and other target. Mk

is the total number of track at time instant k.
Posteriori data association probabilities in LMIPDA-AI can

be derived as follows

bt
0,k =

P(xt0,k , xtk |Zk , Mk )

P(xtk |Zk , Mk )
= 1 − Pt

DPt
G

1 −Ct
k

,

(

Ct
k = Pt

DPt
G 1 −

∑mt
k

i=1

L
t
i,k

Ft
i,k

( ))
(25)

bt
i,k =

P(xti,k , xtk |Zk , Mk )

P(xtk |Zk , Mk)
= Pt

DPt
G

1 −Ct
k

Lt
i,k

Ft
i,k

,

i = 1, . . . , mt
k (26)

For each track t, posteriori state estimate x̂tk and covariance
Pt

k|k are calculated by combining local estimates x̂ti,k|k (17)
and association probabilities bt

i,k (25) and (26)

x̂tk|k =
∑mt

k

i=0

bt
i,k x̂ti,k|k (27)

Pt
k|k =

∑mt
k

i=0

bt
i,k[Pt

i,k|k + (x̂ti,k|k − x̂tk|k )(x̂ti,k|k − x̂tk|k )T] (28)

4.3 Track initialisation and management

At time instant k, tentative tracks are initiated by the previous
kinematic measurements Zc

k−1 and the current kinematic
measurements Zc

k within a rectangle region using the TSI
[18]. The region is determined with maximum velocities of
the target along the x and y coordinates and unbiased
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converted covariance Rc
k (14) as

Rectangle region = 2 Vx, maxTs + 2
����
R11

k

√( )
+

[ ]

× 2 Vy, maxTs + 2
����
R22

k

√( )[ ]
(29)

Once the tracks are automatically initiated by the TSI, then we
could estimate targets’ states using CMKF and LMIPDA-AI
as previously discussed. Our remaining task to complete the
automated MTT system is to make a sophisticated track
management algorithm. The desirable track management
algorithm should identify true tracks which are followed
true targets, and eliminate false tracks not followed. In this
paper, we can manage lots of tracks with only considering
the track existence probability P(xtk |Zk ) (23). Specifically,
our strategy for the efficient track management is to divide
track status into three cases and manage tracks according to
their status.

† A track is initialised using TSI with an initial existence
probability PI(x

t
0).

† A track is confirmed when P(xtk |Zk) exceeds a
confirmation threshold qc and two steps have passed since
the track is initialised.
† A track is terminated when P(xtk |Zk) falls below a
termination threshold qe or predicted states of track locate
outside the surveillance area.

4.4 Track merging

In the MTT without initial true target information, several
confirmed tracks often estimate same targets. Generally, this
problem is called track duplication. To circumvent the
duplications, we classify tracks into some groups according
to their estimated states by exploiting the mean shift [19].
Then, we select the most likely true track in each group.
Based on the mean shift, each track is classified around the
significant modes.

Given estimated states of tracks x̂tk|k , t = 1, . . . , Mk , we can
find the modes of estimated states with a multivariate kernel. Let
us denote the sequence of successive locations of the kernel by
{yj}j=1,2,... and the location are iteratively determined as

yj+1 =

∑Mk
t=1 x̂tk|kg

yj − x̂tk|k
h

∥∥∥ ∥∥∥2
( )

∑Mk
t=1 g

yj − x̂t
k|k

h

∥∥∥ ∥∥∥2
( ) , j = 1, 2, . . . , (30)

where y1 is the centre of the initial kernel, h . 0 is a bandwidth of
kernel and g(x) is derivative of the Epanechnikov kernel profile
kE(x), that is, g(x) ¼ 2k′E(x)

kE(x) =
1

2
c−1

d (d + 2)(1 − ‖x‖2), ‖x‖ ≤ 1

0, otherwise

⎧⎨
⎩ (31)

where d ¼ 4 is the dimension of target states and cd is the volume
of the unit four-dimensional sphere.

By the iterative operation (31), each mode can be found
when the magnitude of the mean shift vector mh,G( yj)
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converges to zero.

mh,G(yj) = yj+1 − yj = 0 (32)

For Mk tracks, the clusters {Cq}1,...,mc
are determined by mc

modes (converged points) and bandwidth h. In this paper,
we define a group when Euclidean distance between x̂tk|k
and mc is closer to 4 × h.

Let us denote a tentative true track {q∗}1,...,mc
in each cluster

{Cq}1,...,mc
. Then, components of the track q∗ are determined

as described:

† The track states x̂q∗

k|k is the mode of the cluster {Cq}1,...,mc
.

† The covariance Pq∗

k|k is the min (P
{Cq}

k|k ).

† The track existence probability P(xq∗

k |Zk ) is the

max(P(x
{Cq}

k |Zk )).
† The track q∗ is confirmed if there is a confirmed track of
the cluster {Cq}.

In these steps, we note that the total number of tentative
true tracks is the same as the number of clusters.

4.5 Summary of the automated MTT

In summary, the automated MTT process is carried out from
the following steps:

Step 1: The set of polar coordinates (range and bearing)
Zp

k = [Zr
k Zu

k ]T is converted into a set of Cartesian
coordinates (x and y coordinate positions) Zc

k using (13),
and the set Zk = [Zc

k Za
k ]T are updated in our MTT systems.

Step 2: Tentative tracks are initiated by TSI as in Section 4.3.
Step 3: For each track t, the validated measurements Zt

k are
determined in the Zk through the validation gate (2) and the
amplitude detection thresholding DT.
Step 4: For each track t, prediction step (16) is performed, and
target SNR is estimated based on the proposed SNR
estimation algorithm as in Section 3.2.
Step 5: For each track t, the posterior probability of target
existence P(xtk |Zk) (23) and posteriori data association
probability bt

i,k (25) and(26) are calculated with the
proposed LMIPDA-AI as in Section 4.2.
Step 6: For each track t, posterior state estimates x̂tk (27) and
covariance Pt

k|k (28) are yielded as in Section 4.2.
Step 7: Tracks are managed using their existence probability
P(xtk |Zk ) as in Section 4.3.
Step 8: Duplicated tracks are integrated by our merging
strategy as in Section 4.4.

5 Simulation results

In this section, several versions of LMIPDA and LMIPDA-AI
have been implemented in an MTT scenario. We examine the
performance of the proposed filter (6) by considering different
conditions of (known and estimated) SNR. Furthermore, to
verify the effectiveness of the amplitude information and
the track merging method given in Section 4.4, we test the
original LMIPDA with and without two functionalities.

1. LMIPDA [21].
2. LMIPDA with known SNR (LMIPDA-AI).
3. LMIPDA with estimated SNR (LMIPDA-EAI).
4. LMIPDA with track merging (LMIPDA-MG).
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5. LMIPDA with known SNR and with track merging
(LMIPDA-AI-MG).
6. LMIPDA with estimated SNR and with track merging
(LMIPDA-EAI-MG).

where the filters (1) and (4) use only with kinematic
information (range and bearing) without amplitude. In
known SNR cases (2) and (5), the filters have information
about the true SNR of each target.

5.1 Ground moving MTT

We generate ten targets, and each target appears and
disappears independently. The target dynamic motion is
modelled with a ground moving target model.

xt
k =

1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦xt

k−1 +

0 0

Ts 0

0 0

0 Ts

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦vk ,

t = 1, . . . , 10 (33)

where each target state xt
k [ <4 contains two-dimensional

positions and velocities along with x and y coordinates.
Sampling time Ts equal to 0.5 and vk ¼ [vx,k vy,k]

T is white
Gaussian noise with a diagonal covariance matrix
Qk ¼ diag[1 1]T. The initial states of the ten targets and
their surveillance time are listed in Table 1.

At time instant k, a set of measurements Zk = [Zr
k Zu

k Za
k ]T

containing range, bearing and amplitude information
disturbed from white Gaussian noise (3) are generated.
Noise variances of wr,k and wu,k are s2

r = 10 and s2
u = 2,

respectively. Target and clutter amplitudes according to
Rayleigh distribution (5) and (6) are generated with each
target SNR in Table 1 and clutter SNR (0 dB). To show
effectiveness of our SNR estimation algorithm, the target
SNRs are considered as the unknown constants. In the
proposed SMC-based SNR algorithm, we design the
proposal density as the uniform distribution given in (10) to
draw the samples {di,k}i¼1, . . . , S.

The sensor detection region is determined with a radial
distance range [0 m–1000 m] and a angle range [08–3608].
Within the detection region, clutters are uniformly
distributed. The number of the clutters is tuned by the
clutter density l in Table 2. All true target trajectories are
generated according to the scenario in Table 1. In Fig. 2,

Table 1 Initial target states, SNRs and times at which they

appear and disappear

Target Initial states Target

SNR,

dB

Appearing

time

Disappearing

time

1 [2300 0.00 200 20.50]T 15 3 250

2 [2850 1.50 2250 20.10]T 10 30 280

3 [2400 1.00 2378 20.50]T 5 50 180

4 [400 20.15 2300 20.05]T 10 100 200

5 [125 1.00 100 0.05]T 20 20 270

6 [150 0.75 2150 0.75]T 20 60 280

7 [250 0.00 200 0.50]T 15 120 300

8 [500 21.25 600 20.25]T 5 100 250

9 [750 21.00 2250 0.10]T 25 100 250

10 [2200 0.25 500 0.25]T 5 150 300
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Table 2 Filter parameters

Parameters Description Value

DT Amplitude detection threshold 1

PD Target detection probability 0.90

PG Gate probability 0.95

S Number of samples for SNR estimation 60

g Gate threshold 9

D11 = P(xtk |xtk−1) Transition probabilities of Markov chain one model 0.98

D21 = P(xtk |x̃tk−1) 0.02

Vx,max Maximum velocity of target along x 10 m/s

Vy,max Maximum velocity of target along y 10 m/s

l Clutter density 3 × 1025 measurements/scan/m2

5 × 1025 measurements/scan/m2

1024 measurements/scan/m2

h Bandwidth of kernel 1

d1 Minimum value in SNR boundary 1 (0 dB)

d2 Maximum value in SNR boundary 1000 (30 dB)

PI(x
t
0) Initial target existence probability 0.8

qc Confirmation threshold 0.8

qe Termination threshold 0.1

Fig. 2 True trajectories of ten targets and all detected measurements

a True trajectories of the ten targets over 300 scans: line-trajectories, circle-initial target positions
b Detected measurement positions from the ten targets and clutters over 300 scans at l ¼ 1024. Around 100 clutters appear per each scan
true trajectories of ten targets and all detected measurements
are depicted over 300 scans. In this scenario, all filters (1)–(6)
struggle to solve the MTT problem with the same filter
parameters in Table 2.

5.2 Optimal subpattern assignment (OSPA) metric

The performance of the filters (1)–(6) is examined with the
OSPA metric [22] as a performance measure. Given two
finite sets, that is, a true set and an estimated set of multi-
target state, we can evaluate the performance of MTT in
terms of OSPA metric which simultaneously represents
‘localisation errors’ and ‘cardinality errors’. The localisation
errors mean the accuracy between true states and estimated
states of multi-target. The cardinality errors demonstrate
how the number of trackers matches with the true number
of objects. The ‘total error’, OSPA distance, is the sum of
‘total localisation errors’ and ‘total cardinality errors’ and
represents the overall quality of the multi-target tracker. Let
us X ¼ {x1, . . . , xm} and Y ¼ {y1, . . . , yn} denote the true
set and the estimated set of target states. The OSPA
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 4, pp. 272–281
doi: 10.1049/iet-rsn.2011.0154

Authorized licensed use limited to: Inha University. Downloaded on Nove
distance �d
(c)
p is defined as

�d
(c)
p (X , Y ) ;

1

n
min
p[Pn

∑m
j=1

d(c)(xi, yp(j))
p + cp(n − m)

( )( )1/p

(34)

if m ≤ n, and �d
(c)
p (X , Y ) ; �d

(c)
p (X , Y ) if m . n; and

�d
(c)
p (X , Y ) = �d

(c)
p (Y , X ) = 0 if m ¼ n ¼ 0. Here, �d

(c)
p (x, y) ;

min(c, ||x − y||) is the distance d. The cut-off parameter c
determines the relative weighing of the penalties assigned to
cardinality and localisation errors. The order parameter p
determines the sensitivity of the metric to outliers. We
select c ¼ 100 and p ¼ 1.

5.3 Comparison results with different MTT filters

Based on the 500 Monte Carlo simulations, the time-averaging
results of OSPA metric between the true sets and the estimated
set of targets state for the filters (1)–(6) are given in Table 3.
Also, we provide computation costs of filters (1)–(6) in
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Table 3 Time-averaging results of OSPA metric between the sets of true state and the sets of estimated states and computation time for

filters (1)–(4)

Filters clutter density l, measurements/scan/m2 LMIPDA LMIPDA-AI LMIPDA-EAI LMIPDA-MG LMIPDA-AI-MG LMIPDA-EAI-MG

(A) OSPA distance

3 × 1025 43.4968 40.0861 41.5285 31.5362 28.5781 29.2299

5 × 1025 54.1097 47.3180 48.7565 39.5441 30.2316 31.4228

1 × 1024 62.5559 50.6407 51.7760 58.7436 32.9661 34.7473

(B) OSPA localisation distance

3 × 1025 17.3358 15.5584 16.0428 9.2184 7.4999 7.5188

5 × 1025 22.0095 18.7623 19.7203 13.5399 7.8196 7.9632

1 × 1024 26.9685 20.7944 21.8048 23.9849 9.2191 9.9692

(C) OSPA cardinality distance

3 × 1025 26.1610 25.1308 25.4857 22.3178 21.0781 21.7111

5 × 1025 32.1002 28.5557 29.0592 26.0042 22.4119 23.4597

1 × 1024 35.5874 29.8463 29.9712 34.7586 23.7471 24.7781

(D) Computation time (s/scan)

3 × 1025 0.0319 0.0254 0.0273 0.0298 0.0225 0.0253

5 × 1025 0.0637 0.0501 0.0572 0.0737 0.0542 0.0601

1 × 1024 0.2339 0.1595 0.1865 0.2956 0.2956 0.3010
Table 3. In the detection region, approximately 30, 50 and 100
clusters are generated for different l values, 3 × 1025,
5 × 1025, and 1024, respectively.

In Table 3, we confirm that the performance of filter can be
considerably improved by exploiting amplitude information
by comparing (1) with (2) and (3). For all OSPA errors
(A)–(C), (2) and (3) show better accuracy than the filter (1)
without the amplitude. In particular, the differences between
the performance of filters (1)–(3) are clearly distinguishable
in high clutter density l ¼ 1024. This result can be
understood that the filters (2) and (3) with the amplitude
information can effectively distinguish unknown origin of
measurement in the heavy cluttered environment.
Surprisingly, the performance difference between the filter
(2) and (3) are negligible. From this evaluation, the
proposed SNR estimation algorithm effectively estimates
target SNR and significantly increases the performance of
the data association in MTT.

Additionally, it is evident that our merging method can
solve track duplication problem by comparing the filters
(1)–(3) with the filters (4)–(6). As expected, the cardinality
errors are dramatically reduced in the filters (4)–(6) by
incorporating our merging method.
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The computation costs of the filters (1)–(4) are evaluated in
Table 3 (D). Based on the comparison between (1) and (2)
with filters (3), we find that our SNR estimation algorithm
can effectively estimate target SNRs with reasonable
computation costs. Moreover, the results demonstrate that
the filter (6) exploiting proposed SNR estimation and
merging algorithm represents almost the same computation
time as the other filters (1)–(5). One possible explanation is
that our merging method could eliminate a lot of the
duplicated tracks in automated MTT.

In Fig. 3, the OSPA distance error is plotted for different
clutter densities over time. We obtain the similar
comparison results as in Table 3. The OSPA distance error
of the filters (1) and (4) without amplitude information is
much higher than that of other filters at l ¼ 1024. During
the time of target appearance or disappearance, we observe
that the distance errors are slightly increased because of the
target cardinality variation. For instance, this phenomenon
is distinguishable at scan 100 when three targets have
appeared. However, the distance error is quickly reduced by
the initiation of new tracks.

Summarising the simulation results described in Table 3
and Fig. 3, we can present following evaluation in terms of
Fig. 3 Comparison results of the filters (1)–(6) in terms of OSPA distances over 300 scans

a Clutter density l ¼ 5 × 1025

b Clutter density l ¼ 1024
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 4, pp. 272–281
doi: 10.1049/iet-rsn.2011.0154

ember 06,2020 at 08:35:49 UTC from IEEE Xplore.  Restrictions apply. 



www.ietdl.org
OSPA metric

LMIPDA . LMIPDA-AI = LMIPDA-EAI

. LMIPDA-MG . LMIPDA-AI-MG

= LMIPDA-EAI-MG

6 Conclusions

In this paper, we propose the automated MTT system which
is composed of the track initialisation, tracking, the data
association and the maintenance. To exploit the amplitude
information in practical cases, we propose the SNR
estimation algorithm based on the SMC method. We propose
the LMIPDA-AI to effectively combine the amplitude
information with the kinematic information based on our
estimation algorithm. For the efficient track management,
we exploit the track existence probability. To prevent
degradation of performance incurred by the track duplication,
a novel track merging method is additionally suggested.

The performance evaluation of our proposal was
demonstrated using an MTT scenario in terms of OSPA
metric. As shown in the experiment results, our automated
MTT system can effectively estimate states of multi-target
for non-linear system in cluttered environment with
reasonable computation costs.
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