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a b s t r a c t 

Recent convolutional detectors learn strong semantic features by generating and combining multi-scale 

features via feature interpolation. However, simple interpolation incurs often noisy and blurred features. 

To resolve this, we propose a novel adversarially-trained interpolator which can substitute for the tra- 

ditional interpolation effortlessly. In specific, we design AFI-GAN consisting of an AF interpolator and a 

feature patch discriminator. In addition, we present a progressive adversarial learning and AFI-GAN losses 

to generate multi-scale features for downstream detection tasks. However, we can also finetune the pro- 

posed AFI-GAN with the recent multi-scale detectors without the adversarial learning once a pre-trained 

AF interpolator is provided. We prove the effectiveness and flexibility of our AF interpolator, and achieve 

the better box and mask APs by 2.2% and 1.6% on average compared to using other interpolation. More- 

over, we achieve an impressive detection score of 57.3% mAP on the MSCOCO dataset. Code is available 

at https://github.com/inhavl- shlee/AFI- GAN . 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Due to the advances in deep convolutional neural networks 

CNNs), the convolutional object detectors [1,2] have shown the 

emarkable accuracy improvement. To improve the robustness over 

he scale variations of objects, the state-of-the-art detectors are 

onstructed based on the multi-scale feature representation. For 

ulti-scale object detection, some architectures [3–6] are designed 

nd used for base networks (i.e. backbone) of detectors. Among 

hem, a feature pyramid network (FPN) [3] develops top-down 

eature propagation and provides the way to use multi-scale 

eatures across all scale levels. For boosting lower layer features, 

ath aggregation FPN (PAFPN) [4] designs the extra bottom-up 

athway following the top-down pathway. 

Inspired by these works, many multi-scale feature methods 

5–7] for object detection have been also presented. In specific, 

5–7] design additional feature propagation pathway for better 

eature representation. Also, detection methods [8,9] are developed 

or using multi-scale features effectively for better detection. 

In those works based on multi-scale feature representation, 

he main process is to resize feature maps before propagating 

eature maps to the next scale level. In general, the bottom-up 

nd top-down feature maps are downsampled and upsampled, 
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espectively. As a result, the feature resolution at the previous level 

an be fitted to it at the next level on the same pathway, but also

ombined with features forwarded from the different pathway. 

owever, simple interpolation methods (e.g. nearest neighbor and 

ilinear) are still exploited when increasing the feature resolution. 

s shown in Wang et al. [10] , these interpolations cause noisy 

nd blurred feature maps. Using these features as an input of a 

etector also degrades the detection accuracy. 

To resolve this problem, we aim at developing a novel fea- 

ure interpolator which can produce up-sampled features used for 

ulti-scale feature learning. In order to learn this interpolator 

ia adversarial learning, we propose a new generative adversar- 

al network (AFI-GAN) consisting of an AF interpolator and a fea- 

ure patch discriminator. Furthermore, we present a new integral 

oss which can make our AFI-GAN appropriate more for multi-task 

earning to multi-scale object detection and segmentation. 

For learning AFI-GAN, we perform adversarial training between 

he AF interpolator and the feature patch discriminator with an 

dversarial feature up-sampling loss. As a result, the AFI-GAN can 

earn a generic up-sampled feature representation from an input 

eature. Subsequently, we incorporate the AFI-GAN with a multi- 

cale feature extractor by replacing the interpolation module with 

he AF interpolator. Then, for learning the multi-scale AF extractor, 

he adversarial training between the multi-scale AF extractor and 

he feature patch discriminator is followed by using the integral 

oss including object detection and adversarial feature up-sampling 

osses. 

https://doi.org/10.1016/j.patcog.2023.109365
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109365&domain=pdf
https://github.com/inhavl-shlee/AFI-GAN
mailto:shbae@inha.ac.kr
https://doi.org/10.1016/j.patcog.2023.109365


S.-H. Lee and S.-H. Bae Pattern Recognition 138 (2023) 109365 

Fig. 1. Proposed AFI-GAN training procedures which consisting of (a) AFI-GAN training detailed in Section 4.1 , (b) multi-scale AF extractor training described in Section 4.2 , 

and (c) target detector training described in Section 4.3 . Note that the multi-scale network and head network of a target detector can be replaced with the other one as 

shown in Fig. 3 and Section 4.3 . 
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Note that learning the interpolator that upsamples a feature 

ap is still challenging because up-sampled outputs should en- 

ance or preserve object locality and discriminability after the in- 

erpolation. To address this, our core idea is to leverage the multi- 

cale feature network (e.g. FPN [3] , PAFPN [4] , and BiFPN [6] ) as

 target feature generator during these AFI-GAN training. To this 

nd, we feed original and downsampled images to the feature net- 

ork, and then extract feature maps at each pyramid level for both 

mages. Then, multi-scale features from the downsampled image 

re forwarded to the AF interpolator, and the up-sampled ones are 

hen compared with the corresponding features extracted from the 

riginal image by the feature patch discriminator. Finally, the AF 

nterpolator is trained adversarially with the feedback of the fea- 

ure patch discriminator as in Fig. 1 . 

Once the AFI-GAN is trained, we can use it for interpolation 

irectly. However, the joint training with a target detector allows 

ur AF interpolator to be more suitable for the specific detection 

ask. In practical, we emphasize that the pre-training of AFI-GAN 

hown in Fig. 1 can be omitted because the reuse of the AFI-GAN 

rained with other backbones is also possible. This indicates that 
2 
ur AFI-GAN can learn generalized up-sampled features and have 

igh flexibility over different backbones. To prove our AFI-GAN, we 

ave implemented several different versions of target detectors by 

sing RetinaNet [11] , Mask R-CNN [12] , FCOS [13] , and CenterMask 

14] representing anchor-based one-stage or two-stage detectors, 

nd anchor-free detectors. We have achieved improvements of box 

nd masks APs by 2.2% and 1.6% on average compared to the same 

etectors using other interpolation. We have also shown the exten- 

ive ablation study with different backbones and detectors. 

The summarization of the main contributions of this paper is 

i) proposition of a novel AFI-GAN to generate up-sampled features 

or multi-scale feature learning and be applicable easily for other 

onvolutional detectors; (ii) proposition of the AFI-GAN losses for 

enerating the high quality of up-sampled features and improving 

etection accuracy together; (iii) proposition of a progressive ad- 

ersarial learning to improve the interpolation ability of AFI-GAN 

tep-by-step for a specific detection task as shown in Algorithm 1 ; 

iv) extensive evaluation and consistent mAP improvement by im- 

lementing various versions of AFI-based detectors with the recent 

ulti-scale feature extractors (i.e. FPN [3] , PAFPN [4] , and BiFPN 
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Algorithm 1: Proposed AFI-GAN training. 

Input : Mini-batch of image set I = { I hr 
i 

, I lr 
i 
} N 

i =1 
and 

pre-trained F . 

Output : Trained AF interpolator G and detector T 

1 // Sec 4.1: Learning G and D while freezing F 

2 for k 1 = 1 , …, K 1 do 

3 Extract ( ̂  P 

hr 
k 1 

, P 

hr 
k 1 

) ← (G (F (I lr 
k 1 

)) , F (I hr 
k 1 

)) 

4 Train D by maximizing L adv D ( ̂
 P 

hr 
k 1 

, P 

hr 
k 1 

) in Eq. (1) 

5 Train G by minimizing L AF ( ̂  P 

hr 
k 1 

, P 

hr 
k 1 

) in Eq. (2) 

6 // Sec 4.2: Learning M embedded G and D while freezing F 

7 for k 2 = 1 , …, K 2 do 

8 Extract ˆ P 

hr 
k 2 

, P 

hr 
k 2 

← M(G (I lr 
k 2 

)) , F (I hr 
k 2 

) 

9 Train D by maximizing L adv D ( ̂
 P 

hr 
k 2 

, ↓ 

×s (P 

hr 
k 2 

)) by Eq. (1) 

10 Train M by minimizing L INT ( ̂  P 

hr 
k 2 

, ↓ 

×s (P 

hr 
k 2 

)) by Eq. (3) 

11 // Sec 4.3: Learning T with G 

12 for k 3 = 1 , …, K 3 do 

13 Train T by minimizing L DET (T (G (I hr 
k 3 

))) as in Sec. 4.3. 
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6] ) and recent detection networks (i.e. Faster-RCNN [3] , RetinaNet 

11] , Mask R-CNN [12] , Cascade R-CNN [15] , FCOS [13] , and Center-

ask [14] ). 

. Related work 

We discuss previous works on deep object detection, multi- 

cale representation, and interpolation methods, which are related 

o our work. 

Deep object detection There are two main approaches in the re- 

ent deep object detection, which are anchor-based and anchor- 

ree object detection. The anchor-based object detection has 

een flourishing since deep convolutional detectors using anchors 

16] showed significant improvement on several detection bench- 

arks [17] . In addition, the anchor-based detection can be divided 

nto two-stage and one-stage methods. The two-stage detection 

ethods first generate regions of interest (RoIs) with the region 

roposal network, and then refine RoIs with the followed R-CNN. 

ask R-CNN [12] attaches a mask head to the two-stage detec- 

or [16] for accurate pixel-wise segmentation. Multi-stage detec- 

ion methods [15] can refine RoIs iteratively in a cascade man- 

er. HON [18] exploits a hierarchical objectness network to im- 

rove the localization quality of the region proposal network. Peng 

t al. [19] attach a context-aware module into the detection head 

etwork in order to improve detection accuracies using high-level 

emantic information. On the other hand, the one-stage detec- 

ors predict detections directly without the region proposal. SSD 

20] produces predictions of different scales from feature maps of 

ifferent scales using the predefined anchors. RetinaNet [11] ad- 

resses the class imbalance problem by introducing a focal loss. 

Recently, the anchor-free object detection methods reduce the 

omputational complexity and hyper-parameters for anchor gener- 

tion. FCOS [13] introduces the centerness branch to refine cen- 

er areas of a box. CenterMask [14] adds a spatial attention-guided 

ask branch to FCOS. ATSS [2] introduces the automatic positive 

nd negative sample selection method based on a statistical ap- 

roach for objects in order to improve accuracies of both FCOS 

13] and RetinaNet [11] . 

Furthermore, there are some efforts [21] to apply adversarial 

earning for improving object detection. However, they exploit an 

dversarial loss in order to improve the RoI feature representation 
3 
or small objects. Compared to these works, our works more focus 

n enhancing the whole image feature maps. 

Multi-scale representation In order to achieve the robustness to 

bject scale variation and the better detection, feature pyramids 

 or multi-scale features) are employed for the multi-scale feature 

epresentation. SSD [20] combines multi-scale features extracted 

rom a bottom-up pathway. MDFN [9] concatenates multi-scale 

eatures to use the semantic and contextual information by deep 

eatures. Gated CNN [8] integrates multi-scale features to provide 

obust features for accurate object detection. On the other hand, 

ecent works [3–6] learn multi-scale features from several different 

athways. FPN [3] first shows that using bottom-up and top-down 

eatures is effective for scale-invariant detection. PANet [4] fur- 

her introduces an extra bottom-up pathway. Inspired by these 

orks, many network architectures using cross-scale [5,6] have 

een presented. NAS-FPN [5] discovers a suitable architecture for 

eature pyramid by using the Neural Architecture Search algorithm 

22] . BiFPN [6] applies top-down and bottom-up feature fusion re- 

eatedly with bi-directional features. mSODANet [23] introduces 

he bi-directional feature aggregation module to refine the multi- 

cale feature from BiFPN [6] and to improve object detection in 

erial images. Still, all these methods exploit a naïve interpolation 

ethod when increasing feature resolution. Therefore, we focus on 

eveloping a feature scaling-up method for learning feature pyra- 

id more accurately. Remarkably, our method can be applicable 

asily for all these previous methods by replacing the interpolation 

ethod with ours. 

Interpolation methods Interpolation methods can be categorized 

nto traditional interpolation and learning-based interpolation. Tra- 

itional interpolation methods upsample an input image based on 

ts own value without learning an additional model. Therefore, 

hese methods are intuitive and easy to implement. For instance, 

 nearest-neighbor interpolation copies the value from the near- 

st pixel without consideration of other pixels. Bilinear and bicu- 

ic interpolations compute the value by evaluating the values of 

earby pixels. However, they tend to occur noisy and blurred re- 

ults as shown in Wang et al. [10] . Learning-based interpolation 

xploits additional weight and bias parameters in order to upscale 

n input resolution. Transposed convolution, also called deconvo- 

ution [24] , upsamples an input by calculating the weighted value 

rom the learned parameters and pixel values. A sub-pixel layer 

25] performs upsampling by expanding the channels of the out- 

ut features and then rearranging these points. Due to the usage 

f additional parameters for upsampling, the learning-based inter- 

olation methods show better results compared to traditional in- 

erpolations. Compared to the existing interpolation methods, our 

orks more focus on improving a detection accuracy by generating 

psampled feature maps for multi-scale feature representation. To 

his end, we design the AF interpolator with both bilinear interpo- 

ation and deconvolution to improve the quality of the upsampled 

eature map. Moreover, we propose an adversarial learning method 

ith a detection loss in order to increase feature locality and dis- 

riminability after enlarging the feature map. 

. Adversarial feature interpolation GAN 

For generating up-sampled features at any scale which can be 

pplicable for multi-scale feature learning, we first design AFI-GAN 

onsisting of an AF interpolator and a feature patch discriminator 

s discussed in Section 3.1 . For training the AFI-GAN from scratch, 

e exploit the existing multi-scale feature network as a target fea- 

ure generator, and match up-sampled features from an AF interpo- 

ator with the corresponding features of the same resolution from 

he target generator as mentioned in Section 3.2 . Furthermore, we 

resent an adversarial progressive learning to avoid it overfitted 

s shown in Section 4 . However, note again that we can train a 



S.-H. Lee and S.-H. Bae Pattern Recognition 138 (2023) 109365 

Fig. 2. Proposed AFI-GAN architecture consisting of (a) an AF interpolator and (b) a feature patch discriminator. 

Fig. 3. Multi-scale feature extractors for multi-scale feature learning. Figure 3 shows the structures of (a) a feature pyramid network (FPN) [3] , (b) a path aggregation 

network (PAFPN) [4] , and (c) a bi-directional feature pyramid network (BiFPN) [6] , respectively. In the interpolation module (Interp.) of each network, we replace a nearest 

neighbor interpolation with our AF interpolator. In our implementation, we set the number of BiFPN layers D bi f pn to 3 and 7 for ResNet [30] -BiFPN and Swin Transformer 

[31] -BiFPN, respectively. 
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w  
arget detector embedded with the AF interpolator at once as in 

ection 4.3 if a pre-trained AF interpolator by using any multi- 

cale feature network is provided. Thus, some pre-training phases 

o warm-up the AFI-GAN can be omitted in practice. 

.1. Overall architecture 

As shown in Fig. 2 , the AF interpolator G generates an up- 

ampled feature map 

ˆ P hr for an input feature map of lower resolu- 

ion feature P lr . On the other hand, the feature patch discriminator 

 identifies between patches extracted within the up-sampled fea- 

ure ˆ P hr and high-resolution feature P hr (For more details of P hr , 

efer to Section 3.2 ). 

For the interpolator G , we feed P lr of any resolution to a 3 × 3

onvolution and a Leaky ReLU activation (LReLU) layers ( α = 0 . 2 ).

fter them, we add 3 consecutive residual dense blocks [26] and 

 shortcut connection which bypasses them in order to exploit the 

ore informative representation for up-sampling. 1 Concretely, each 

esidual dense block contains 5 densely connected 3 × 3 convolu- 

ion layers with growth rate of 32, 4 Leaky ReLU layers, and one 

hortcut connection. For stabilizing the training, residual scaling 

27] ( β = 0.2) is applied before the identity mapping. Then, one 

onvolution and one deconvolution blocks are followed to scale-up 

he feature resolution by a factor of 2. Lastly, we add a 3 × 3 con-

olution layer and an additional shortcut connection between the 

econvolved feature and upsampled input feature by the bilinear 

nterpolation. We exploit the deconvolved feature in order to up- 

ample features. However, we additionally upsample the feature by 

sing the bilinear interpolation in order to exploit an input feature 

epresentation fully with a low computational cost. As a result, we 

an generate the high quality of upsampled feature maps by using 

oth features. 

The discriminator D , which is a modified version of a patch dis- 

riminator [28] , convolves ˆ P hr or P hr by using three convolution 

locks with 512, 1024, and 1024 channels. Here, each block con- 

ains a 3 × 3 convolution, a batch normalization, and a Leaky ReLU 

ctivation layer ( α = 0 . 2 ). Then, the class per feature map pixel is

redicted by a 3 × 3 convolution and a sigmoid activation function. 

s an activation function of AFI-GAN, we choose LeakyReLU due to 
1 A comparison of different G architectures is given in Table 2 . i

4 
ts robustness of optimization [29] . In addition, it is often used for 

raining GAN methods [28] . 

.2. Adversarial training with multi-scale features 

Given an image I, we denote multi-scale features F ( I ) = { P i | N s ≤
 ≤ N e } , where F is a multi-scale feature extractor, P i is a feature

ap at level i , and N s and N e are the first and last scale levels

f top-down feature maps from finer to coarser resolution. Here, 

 feature map is denoted as P i = { P c 
i 
} C 

c=1 
, where C is the channel

f the feature map. Given a high-resolution image I hr and its low- 

esolution counterpart I lr , we define the problem of learning G and 

 with F using the adversarial min-max loss L adv : 

in 

θG 

max 
θD 

E I hr ∼p train ( I hr ) 

[ 

N e ∑ 

i = N s 

1 

W i H i 

W i ∑ 

x =1 

H i ∑ 

y =1 

log 

(
D θD 

(
P hr 

i 

)
x,y 

)] 

+ E I lr ∼p G ( I lr ) 

[ 

N e ∑ 

i = N s 

1 

W i H i 

W i ∑ 

x =1 

H i ∑ 

y =1 

log 

(
1 − D θD 

(
G θG 

(
P lr i 

))
x,y 

)] 

(1) 

To solve this, we scale-down I hr to I lr = ↓ 

×s 
(
I hr 

)
, where ↓ 

×s 

eans the down-sampling by a downscaling factor s (< 1) . We 

hen extract multi-scale features P 

hr = 

{
P hr 

N s 
, . . . , P hr 

i 
, . . . , P hr 

N e 

}
and 

 

lr = 

{
P lr 

N s 
, . . . , P lr 

i 
, . . . , P lr 

N e 

}
by feeding I hr and I lr to F , respectively. 

hus, our main idea behind this formulation is that we make G 

earn the feature distribution of the high-resolution image at each 

cale by fooling a D that is trained to discriminate up-sampled fea- 

ure patches from high-resolution feature patches. For multi-scale 

eatures, W i and H i are the width and height of muti-scale features 

long the scale level i , respectively. x and y are indexes of the fea- 

ure pixel coordinates. θD and θG are parameters of the discrimina- 

or and interpolator, respectively. Also, the resolutions of P hr 
i 

and 

 

(
P hr 

i 

)
are same but their channel dimensions are C and 1, respec- 

ively, according to Section 3.1 . For multi-scale feature learning, we 

xploit BiFPN [6] as F . However, it could be replaced with other 

ulti-scale feature extractor (e.g. PAFPN [4] and FPN [3] ). 2 Also, 

e set s to 0.5 since the resolution of P i −1 in BiFPN is higher than
2 In our implementation, we use BiFPN [6] , PAFPN [4] , and FPN [3] for F as shown 

n Tables 1 and 5 . 
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Table 1 

Comparison with other detectors on COCO test − dev . ‘R’, ‘S’, ‘X’, and ‘Swin’ denote ResNet [30] , ResNeSt [40] , ResNeXt [44] , and Swin-Transformer [31] , respectively. ‘ ∗’, ‘ ‡ ’, and ‘ ♦ ’ represent our re-implementation, multi-scale 

testing results, and training with COCO unlabeled set via self-training [45] , respectively. 

Interpol. Backbone Detector AP box AP box 
50 AP box 

75 AP box 
S AP box 

M AP box 
L AP mask AP mask 

50 AP mask 
75 AP mask 

S AP mask 
M AP mask 

L 

NN X-101-64x4d-FPN MAL ‡ [35] 47.0 66.1 51.2 30.2 50.1 58.9 – – – – – –

NN VoVNetV2-99-FPN CenterMask [14] 46.5 – – 28.7 48.9 57.2 41.8 – – 24.4 44.4 54.3 

NN X-101-64x4d-FPN-DCN ATSS ‡ [2] 50.7 68.9 56.3 33.2 52.9 62.4 – – – – – –

NN X-101-64x4d-FPN HTC [1] 47.1 – – – – – 41.2 63.9 44.7 22.8 43.9 54.6 

NN R-101-FPN-DCN TSP-RCNN [36] 47.4 66.7 51.9 29.0 49.7 59.1 – – – – – –

NN X-101-64x4d-FPN-DCN Dynamic DETR [37] 49.3 68.4 53.6 30.3 51.6 62.5 – – – – – –

NN SENet-154-FPN-DCN TSD 

‡ [38] 51.2 71.9 56.0 33.8 54.8 64.2 – – – – – –

NN X-101-64x4d-FPN-DCN OTA ‡ [39] 51.5 68.6 57.1 34.1 53.7 64.1 – – – – – –

NN S-200-FPN-DCN [40] Cascade R-CNN 

‡ 
53.3 72.0 58.0 35.1 56.2 66.8 47.1 – – – – –

NN Res2Net-101-FPN-DCN GFLV2 ‡ [41] 53.3 70.9 59.2 35.7 56.1 65.6 – – – – – –

NN X-152-32x8d-FPN-DCN PAA ‡ [42] 53.5 71.6 59.1 36.0 56.3 66.9 – – – – – –

NN X-101-64x4d-RFP DetectoRS ‡ [7] 55.7 74.2 61.1 37.7 58.4 68.1 48.5 72.0 53.3 31.6 50.9 61.5 

NN Res2Net-101-BiFPN-DCN CenterNet2 ♦‡ [43] 56.4 74.0 61.6 38.7 59.7 68.6 – – – – – –

NN R-50-FPN RetinaNet 
∗

37.6 57.3 40.2 21.7 40.8 46.6 – – – – – –

NN R-50-FPN FCOS ∗ 39.7 58.9 43.2 23.6 42.7 48.6 – – – – – –

NN R-50-BiFPN FCOS ∗ 40.6 59.4 43.8 24.1 43.3 49.6 – – – – – –

NN R-50-FPN Faster R-CNN 

∗ 38.3 59.5 41.4 22.3 40.7 47.9 – – – – – –

NN R-50-FPN Mask R-CNN 

∗
39.0 60.0 42.5 22.6 41.4 48.7 35.5 57.0 37.8 19.5 37.6 46.0 

NN R-50-PAFPN Mask R-CNN 

∗
39.0 59.8 42.5 22.8 41.3 48.8 35.6 56.9 38.1 19.8 37.6 46.3 

NN R-50-FPN CenterMask 
∗

39.7 58.1 43.2 23.0 42.3 49.7 35.2 55.7 37.8 19.1 37.6 45.8 

NN R-50-BiFPN CenterMask 
∗

40.6 58.7 44.2 23.5 43.2 50.1 35.8 56.3 38.5 19.5 38.1 46.1 

NN S-101-FPN Cascade R-CNN 

∗
48.5 67.1 52.7 30.1 51.3 61.3 41.8 64.6 45.3 24.8 44.4 54.4 

NN S-101-PAFPN Cascade R-CNN 

∗
48.6 67.2 52.7 29.8 51.6 61.2 41.9 64.7 45.3 24.5 44.5 54.4 

NN Swin-T-BiFPN Cascade R-CNN 

∗
46.3 64.0 50.0 28.6 48.7 58.6 – – – – – –

NN Swin-T-BiFPN Cascade R-CNN 

∗♦ 
48.3 65.9 52.3 30.5 51.3 60.6 – – – – – –

AFI (ours) R-50-FPN RetinaNet 
∗

40.1 59.4 43.2 24.2 43.5 48.3 – – – – – –

AFI (ours) R-50-FPN FCOS ∗ 42.6 61.4 46.4 26.3 45.5 51.3 – – – – – –

AFI (ours) R-50-BiFPN FCOS ∗ 43.9 62.4 47.6 27.2 46.7 53.0 – – – – – –

AFI (ours) R-50-FPN Faster R-CNN 

∗ 39.8 60.4 43.4 24.0 43.0 48.0 – – – – – –

AFI (ours) R-50-FPN Mask R-CNN 

∗
41.5 62.0 45.7 25.6 44.9 49.9 37.4 59.1 40.2 21.8 40.1 46.8 

AFI (ours) R-50-PAFPN Mask R-CNN 

∗
40.9 61.3 44.6 23.8 43.8 51.4 36.9 58.5 39.5 20.3 39.2 48.0 

AFI (ours) R-50-FPN CenterMask 
∗

42.4 60.5 46.2 25.8 45.7 51.6 37.5 58.1 40.5 21.3 40.5 47.5 

AFI (ours) R-50-BiFPN CenterMask 
∗

43.8 61.7 47.6 26.9 46.6 53.4 38.2 59.3 41.3 22.3 40.7 48.4 

AFI (ours) S-101-FPN Cascade R-CNN 

∗
49.3 67.7 53.4 31.1 52.3 61.5 42.5 65.3 45.9 25.7 45.1 54.4 

AFI (ours) S-101-FPN Cascade R-CNN 

∗‡ 
51.6 70.1 56.0 34.1 54.5 64.1 44.8 67.7 48.8 28.3 47.4 57.4 

AFI (ours) S-101-PAFPN Cascade R-CNN 

∗
49.4 67.8 53.4 30.9 52.2 61.9 42.6 65.3 46.0 25.7 45.0 54.8 

AFI (ours) S-101-PAFPN Cascade R-CNN 

∗‡ 
51.6 70.1 56.0 34.0 54.4 64.6 44.7 67.7 48.7 28.2 47.0 57.5 

AFI (ours) Swin-T-BiFPN Cascade R-CNN 

∗
47.8 66.1 51.5 29.4 50.5 60.3 – – – – – –

AFI (ours) Swin-T-BiFPN Cascade R-CNN 

∗♦ 
51.7 70.2 55.9 33.0 55.0 65.0 – – – – – –

AFI (ours) Swin-T-BiFPN Cascade R-CNN 

∗♦‡ 
53.8 72.4 58.3 36.3 56.6 67.1 – – – – – –

AFI (ours) Swin-L-BiFPN Cascade R-CNN 

∗♦ 
54.9 73.0 59.6 36.0 58.3 69.0 – – – – – –

AFI (ours) Swin-L-BiFPN Cascade R-CNN 

∗♦‡ 
57.3 76.0 62.2 39.8 60.6 71.2 – – – – – –

5
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6 
t of P i by a factor of 2 ( N s < i ≤ N e ). For BiFPN and PAFPN, we ex-

loit the final multi-scale features as a target feature when train- 

ng AFI-GAN, respectively. This is because they are the final out- 

ut features after repeated bottom-up and top-down propagations 

n multi-scale feature extractors as shown in Fig. 3 . In the next 

ection 4 , we use BiFPN as a base feature extractor F , and denote

 i as an i -th level multi-scale feature map for simplicity. 

. Training 

The goal of the AFI-GAN training is to generate a multi-scale 

F extractor for a target detector. We first train a generalized AFI- 

AN which can scale-up any lower-resolution features by a factor 

f 2. To train it, we perform adversarial training between G and D 

y exploiting multi-scale features of F as target features. We then 

uild a multi-scale AF extractor by changing all the interpolation 

odules of the feature extractor with the pre-trained AF interpola- 

or. The multi-scale AF extractor and D can be trained adversarially 

n the alternative manner. Basically, we can train them by solving 

q. (1) . However, we add additional content (pixel-wise L1) and 

etection losses. As a result, we can improve the quality of up- 

ampled features per scale and multi-scale representation for ob- 

ect detection. Finally, we can train several FPN-based Mask R-CNN, 

etinaNet, and CenterMask detectors with the trained AF interpo- 

ater by minimizing its detection loss without adversarial train- 

ng. For more clarity, we present the AFI-GAN training as shown 

n Algorithm 1 . 

.1. AFI-GAN 

For generating upsampled features, we perform adversarial 

raining between an AF interpolator G and a feature patch dis- 

riminator D as shown in Fig. 1 (a). We first define an adversarial 

eature up-sampling loss L AF ( G, D, F ) = L cont ( G, F ) + λL adv ( G, D, F ) 
omposed of the content loss and adversarial loss of Eq. (1) . 

 cont evaluates the discrepancy between upsampled ones of low- 

esolution features and its counterpart high-resolution features at 

ach scale level i using a pixel-wise L1 distance. On the other hand, 

 adv G encourages G to produce upsampled features by fooling D . By 

inimizing L AF with respect to θG , we can train G as: 

min 

θG 

N e ∑ 

i = N s 

1 
CW i H i 

∑ C 
c=1 

∑ W i 

x =1 

∑ H i 
y =1 

∣∣∣(P hr 
i 

)c 

x,y 
−

(
G θG 

(
P lr 

i 

))c 

x,y 

∣∣∣
+ λ

∑ N e 
i = N s 

1 
W i H i 

∑ W i 

x =1 

∑ H i 
y =1 

− log 

(
D θD 

(
G θG 

(
P lr 

i 

))
x,y 

)
, 

(2) 

here λ is a hyper parameter for controlling the feedback of D and 

uned to 0.001. C is the channel of the feature map, and is set to 

56. 3 

On the other hand, when training D , we exploit a generic GAN 

oss described in Eq. (1) . D tries to maximize the probabilities of 

dentifying the correct labels for the given target and up-sampled 

eature patches from G . From this adversarial training, AFI-GAN can 

earn a generalized up-sampled feature representation for an input 

eature. 

.2. Multi-scale AF extractor 

We design a multi-scale AF extractor by embedding the trained 

F interpolator into BiFPN. Simply, we change all the interpolation 

odules of BiFPN with the AF interpolator. 4 As shown in Fig. 1 (b), 
3 The number of output channels of the feature map is different from that of the 

riginal BiFPN [6] . Also, we use the same C = 256 for PAFPN [4] and FPN [3] . 
4 The comparison of different interpolation methods are provided in Table 6 and 

ig. 7 . 
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5 When freezing the learned parameters of the AF interpolator during T training, 

the mAP of T is degraded as shown in Table 4 
e attach box and mask heads on the extractor, and we denote 

his AFI-based detection architecture as M for simplicity. For ad- 

ersarial training, we also use the feature patch discriminator D 

nd the trained parameters of D are re-used. We define an inte- 

ral loss in consideration of detection accuracy and the quality of 

psampled features as L INT ( M, D, F ) = L AF ( M, D, F ) + L DET ( M ) . Her e, 

 DET ( M ) is the overall detection loss which is slightly different ac- 

ording to the detection heads. In our case, we use losses of Mask 

-CNN [12] , RetinaNet [11] , FCOS [13] , CenterMask [14] , and Cas-

ade R-CNN [15] when attaching their heads to our AF extrac- 

or. Similar to Eq. (2) , L AF ( M, D, F ) is the adversarial feature up- 

ampling loss evaluating the discrepancy between upsampled fea- 

ures and target features as well as encouraging G to generate up- 

ampled features by deceiving D . While training M by minimizing 

 INT ( M, D, F ) , F is not trained, but it just provides target features 

o D . Because L INT contains the detection loss L DET , optimizing our 

etwork with respect to L INT enhances the localization and dis- 

rimination powers of our AF interpolator. 

Note that for L AF evaluation we first scale-down I hr to resample 

 

lr = ↓ 

×0 . 5 
(
I hr 

)
, and then provide I lr and I hr to M and F to extract

 

lr = 

{
P lr 

3 
, . . . , P lr 

7 

}
and P 

hr = 

{
P hr 

3 
, . . . ., P hr 

7 

}
, respectively, as shown 

n Fig. 1 (b). We then extract a set of up-sampled features ˆ P 

hr = 

G θG 

(
P lr 

3 

)
, . . . , G θG 

(
P lr 

7 

)}
, but scale-down P 

hr to ↓ 

×0 . 5 
(
P 

hr 
)
. This is 

ecause of the following reasons: (1) To compare up-sampled and 

igh-resolution features at the same scale ( or pyramid) level i 

ince semantic information levels are different across feature pyra- 

id levels as also discussed in Lin et al. [3] . For instance, we

an feed the same I hr to M and F to compare 
{

ˆ P hr 
4 

, ˆ P hr 
5 

, ˆ P hr 
6 

, ˆ P hr 
7 

}
nd 

{
P hr 

3 
, P hr 

4 
, P hr 

5 
, P hr 

6 

}
, respectively. However, when evaluating L AF , 

he mismatch of feature semantic levels degrades mAP to about 

.6% shown in Table 7 . (2) To reduce GPU usage. Alternatively, we 

an feed the original I hr and ↑ 

×2 
(
I hr 

)
to M and F , and make the

evel-wise feature comparison between 

{
G θG 

(
P hr 

3 

)
, . . . , G θG 

(
P hr 

7 

)}
nd F 

(↑ 

×2 
(
I hr 

))
without the downsampling. However, it is very 

ostly for GPU memory. In return, for evaluating L DET ( M ) with the 

nput of ↓ 

×0 . 5 
(
I hr 

)
, we need to fit the ground truth of box loca-

ions and mask regions to ↓ 

×0 . 5 
(
I hr 

)
of the resolution. In order to 

rain parameters θM 

of the multi-scale AF extractor, we minimize 

he following L AF ( M, D, F ) : 

in 

θM 

N e ∑ 

i = N s 

1 

C	 s W i 
	 s H i 
 

×
C ∑ 

c=1 

	 s W i 
 ∑ 

x ′ =1 

	 s H i 
 ∑ 

y ′ =1 

∣∣∣(↓ 

×s 
(
P hr 

i 

))c 

x ′ ,y ′ −
(

ˆ P hr 
i 

)c 

x ′ ,y ′ 

∣∣∣
+ λ

N e ∑ 

i = N s 

1 

	 s W i 
	 s H i 
 
	 s W i 
 ∑ 

x ′ =1 

	 s H i 
 ∑ 

y ′ =1 

− log 

(
D θD 

(
ˆ P hr 
i 

)
x ′ ,y ′ 

)
, 

(3) 

here 	 s W i 
 and 	 s H i 
 are width and height of downsampled tar- 

et feature by a factor s (= 0 . 5) at level i . The same λ of Eq. (2) is

sed. Compared to Eq. (2) , an up-sampled feature at previous level 

s used as an input of the next scale level, where an up-sampled 

eature is extracted as ˆ P hr 
i 

= M θM 
( ̂  P hr 

i +1 
) , N s ≤ i < N e . Therefore,

 AF ( M, D, F ) makes M suitable more for multi-scale representation. 

For adversarial training of D , we denote L adv D in Eq. (1) as the

dversarial loss of D . We use ↓ 

×0 . 5 
(
P 

hr 
)

and 

ˆ P 

hr as real and fake 

nput features. In the similar manner, by maximizing L adv D , we can 

rain D , and leverage its predictions for the generated 

ˆ P 

hr for train- 

ng M. 

.3. Target detector 

As shown in Fig. 1 (c), we apply our trained AF interpolator for 

raining a target detector T which exploits a multi-scale feature ex- 
7 
ractor as a backbone. More concretely, we change all the interpo- 

ation modules of T with the AF interpolator only, but do not reuse 

ther trained parameters of the feature extractor. In order to train 

 , we minimize the overall detection loss L DET defined by the head 

ype of T as discussed in Section 4.2 . 

Note that the main difference from the previous training on 

he multi-scale AF extractor feeds the original image itself to T 

ithout downsampling. Therefore, the AF interpolator can be fine- 

uned to be suitable more for the detection in high resolution im- 

ges through this training. 

In addition, we fine-tune the parameters of the AF interpola- 

or while training T . 5 In practice, once a pre-trained AF interpo- 

ator model is given, we can train T directly without the training 

f AFI-GAN and AF extractor. This indicates that the training com- 

lexity of T using the AF interpolator can be significantly reduced. 

e prove the effectiveness of reusing the pre-trained models in 

able 3 . Furthermore, it is also feasible to reuse the whole multi- 

cale AF feature extractor for T instead of using the AF interpolator 

nly. In this case, the mAP of T can be improved further as shown

n Table 2 . 

As shown in Fig. 4 , we combine various recent detection heads 

nto our architecture, and implement several versions of AFI-based 

etectors with a different detection head T . We present the details 

f each detection head as follows: 

.3.1. Mask R-CNN 

This anchor-based two-stage object detection method [12] has 

wo-stages for region proposal and refinement. At the first stage, 

he detector generates region proposals by feeding multi-scale 

eatures and reference boxes (anchors) into RPN [16] . After ap- 

lying non-maximum suppression (NMS) on proposals with fore- 

round classification scores and IoU scores, features of proposals 

re cropped by RoI align operation. At the second stage features of 

roposals are forwarded through 3 parallel head branches (box re- 

ression, classification, and class-agnostic mask prediction heads) 

n order to refine the box locations, and predict a class confidence 

nd object mask regions for each proposal. Then, per-class NMS is 

pplied to candidate boxes in order to yield final results. For train- 

ng Mask R-CNN, the loss function of Mask R-CNN L M 

DET is defined 

s: 

 

M 

DET = L M 

cls + L M 

loc + L M 

mask + L M 

rpn , (4) 

here L M 

cls 
and L M 

loc 
are log (i.e. cross entropy) and smooth L1 losses, 

espectively, as described in Girshick [32] . L M 

mask 
is the average bi- 

ary cross-entropy loss. The loss L M 

rpn of the region proposal net- 

ork is composed of the binary cross entropy and smooth L1 

osses for classification and box regression. 

.3.2. RetinaNet 

This anchor-based one-stage object detection method 

11] presents the focal loss to solve the class imbalance prob- 

em. The detector consists of a backbone network and two subnets 

or classification and box regression. For a backbone network, 

t extracts multi-scale features. Then, the classification subnet 

redicts the classification probability at each spatial position for 

ach of the predefined 9 anchors and 80 object classes. The box 

egression subnet infers the 4 × 9 linear outputs for predicting 

patial location for each object. Then, RetinaNet decodes box pre- 

ictions from top 1k candidates per multi-scale feature extractor 

evel, after thresholding detector confidence 0.05. After merging 

op predictions from all levels, per-class NMS is applied to get 
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Table 3 

Comparison results of target detectors trained by different AF extractors on COCO v al2017 . All detectors are trained based on R-50-FPN for 

about 12 COCO epochs. All times are reported per image on a same Titan Xp GPU. 

Target detector Interpol Head for multi-scale 

AF extractor 

AP box AP mask # Params Time (ms) 

Mask R-CNN 

(Baseline) 

NN – 38.6 35.2 44 M 72 

Mask R-CNN AFI Mask R-CNN 41.2 37.0 52 M 118 

Mask R-CNN AFI RetinaNet 40.0 36.2 52 M 118 

Mask R-CNN AFI Centermask 40.5 36.5 52 M 117 

RetinaNet 

(Baseline) 

NN – 37.4 – 37 M 88 

RetinaNet AFI Mask R-CNN 39.6 – 45 M 101 

RetinaNet AFI RetinaNet 38.2 – 45 M 102 

RetinaNet AFI Centermask 39.7 – 45 M 107 

Centermask 

(Baseline) 

NN – 39.8 35.1 51 M 73 

Centermask AFI Mask R-CNN 42.1 37.2 59 M 84 

Centermask AFI RetinaNet 40.9 35.9 59 M 86 

Centermask AFI Centermask 41.7 36.8 59 M 85 

Table 4 

Effects of progressive learning. ‘FR’ means freezing the pre-trained parameters of the AF interpolator during target detector training. 

Name Interpol. AFI-GAN Multi-scale AF extractor Target detector FR AP box AP box 
50 AP box 

75 AP mask AP mask 
50 AP mask 

75 

A1 NN 38.6 59.4 42.1 35.2 56.3 37.5 

A2 AFI (Ours) � � 39.4 60.3 43.2 35.8 57.0 38.4 

A3 AFI (Ours) � � 32.1 52.1 33.7 30.0 50.2 31.5 

A4 AFI (Ours) � � � � 39.9 60.2 43.7 36.2 57.1 39.1 

A5 AFI (Ours) � � � 41.2 61.4 45.4 37.0 58.3 40.0 

A6 AFI (Ours) � 38.8 59.6 42.3 35.4 56.6 37.7 

Table 5 

Comparisons with different multi-scale feature methods and the proposed method on COCO v al2017 . All detectors are trained 

for about 12 COCO epochs. 

Interpolation Backbone Multi-scale feature method Detector AP box AP box 
50 AP box 

75 AP box 
S AP box 

M AP box 
L 

NN R-50 FPN RetinaNet 37.4 56.7 40.3 23.1 41.6 48.3 

NN R-50 PAFPN RetinaNet 37.7 56.7 40.4 23.0 42.2 48.2 

NN R-50 BiFPN RetinaNet 38.2 57.4 40.8 22.4 42.4 48.8 

AFI (ours) R-50 FPN RetinaNet 39.6 58.8 42.6 24.4 43.8 49.5 

AFI (ours) R-50 PAFPN RetinaNet 39.7 58.8 43.0 25.7 44.0 48.8 

AFI (ours) R-50 BiFPN RetinaNet 41.9 60.8 44.9 26.8 45.7 52.6 

Table 6 

Comparison of interpolation methods for accuracy and network capacity on the COCO v al2017 set. All detectors are trained with Mask R-CNN R-50-FPN for about 

12 COCO epochs. 

Interpolation method for FPN AP box AP box 
50 AP box 

75 AP box 
S AP box 

M AP box 
L AP mask AP mask 

50 AP mask 
75 AP mask 

S AP mask 
M AP mask 

L # Params 

Nearest Neighbor (NN) 38.6 59.5 42.1 22.5 42.0 49.9 35.2 56.3 37.5 17.2 37.7 50.3 44 M 

Bilinear (BL) 38.6 59.4 42.2 22.5 41.9 50.0 35.2 56.4 37.5 16.9 37.7 50.7 44 M 

Bicubic (BC) 38.5 59.4 42.3 23.1 41.8 49.2 35.1 56.4 37.6 17.3 37.5 50.2 44 M 

NN-5conv 37.4 57.0 40.6 21.3 40.4 48.5 34.0 54.0 36.6 16.0 36.0 49.0 53 M 

BL-5conv 37.4 57.0 40.7 21.4 40.5 48.1 34.0 54.1 36.4 15.9 36.0 48.8 53 M 

BC-5conv 37.0 56.6 40.3 21.4 39.8 48.1 33.8 53.8 36.3 15.7 36.0 49.0 53 M 

Deconv 40.2 61.0 44.0 23.9 43.5 52.1 36.7 58.0 39.4 17.9 38.9 52.9 53 M 

AF interpolator (Ours) 41.2 61.4 45.4 25.2 45.0 51.4 37.0 58.3 40.0 18.8 39.5 52.2 54 M 

Table 7 

Effect of semantic level matching for L AF . 

L AF (M, D, F ) AP box AP box 
50 AP box 

75 AP box 
S AP box 

M AP box 
L AP mask AP mask 

50 AP mask 
75 AP mask 

S AP mask 
M AP mask 

L 

Different f eature levels 39.6 60.1 43.2 23.6 42.9 51.1 35.9 57.1 38.3 17.6 38.5 51.6 

Same feature levels (Ours) 41.2 61.4 45.4 25.2 45.0 51.4 37.0 58.3 40.0 18.8 39.5 52.2 
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nal results. For training this RetinaNet, the loss function L R 
DET 

is 

efined as: 

 

R 
DET = L R cls + L R loc , (5) 

here L R 
cls 

and L R 
loc 

are the focal and smooth L1 losses, respectively. 
8 
.3.3. FCOS 

This anchor-free one-stage object detection method [13] intro- 

uces the centerness branch, which refines center areas of a box. 

he detector consists of a backbone and 3 head branches (clas- 

ification, regression, and centerness). The detector is based on a 

ulti-scale feature extractor. In order to determine a box location, 
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Fig. 4. Various recent detection network heads. For multi-scale AF extractor and target detector training as in Sections 4.2 and 4.3 , we minimize the overall detection loss 

L DET which is different according to the mounted detection head. 
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he regression branch predicts 4-dimensional normalized offsets 

left, right, top, and bottom) to adjust box lengths at the center 

oint. The classification branch infers a 80-dimensional vector per 

ox when classifying 80 different object categories. The centerness 

ranch measures how close the predicted center point is to the 

orresponding GT point. For predicting this score, a single layer 

ranch is added. By multiplying the classification score of a box 

ith its centerness, the box score can be re-weighted. As a result, 

uring NMS, the low-quality boxes can be suppressed better. The 

oss of FCOS L F 
DET 

is 

 

F 
DET = L F cls + L F reg + L F ctr , (6) 

here L F 
cls 

is the focal loss as in Lin et al. [11] and L F reg is the IoU

oss as in Yu et al. [33] . L F ctr is the binary cross entropy loss for

redicting a centerness score ranging from 0 to 1. 

.3.4. CenterMask 

This [14] is an improved version of FCOS [13] by attaching a 

patial attention-guided mask branch (SAG-Mask) for instance seg- 

entation. Therefore, it has the similar architecture as FCOS de- 

cribed in Section 4.3.3 . However, CenterMask adds a mask head 

amed as a spatial attention-guided mask head in order to predict 

egmentation mask inside the cropped regions in a per-pixel man- 

er. Also, a mask scoring head [34] is attached for recalibrating the 

lassification score in consideration of predicted mask quality. For 

raining this, the following detection loss L C 
DET 

is used: 

 

C 
DET = L C cls + L C reg + L C ctr + L C mask + L C maskiou , (7) 

here L C 
cls 

, L C reg , L 
C 
ctr are the same as in FCOS as described in

ection 4.3.3 . L C 
mask 

is the same average binary cross-entropy loss 

s in Mask R-CNN as described in Section 4.3.1 . L C 
maskiou 

is the L2

oss for regressing MaskIoU as in Huang et al. [34] . 

. Experiments 

In this section, we prove the effects of our method via ablation 

tudies and comparisons with state-of-the-arts (SOTA) methods. All 

xperiments are conducted on the MS COCO dataset [17] contain- 

ng 118k images for training ( train 2017 ), and 5k images for val-

dation ( v al2017 ). For testing, 20k images without labels are in- 

luded and results can be evaluated only on the challenge server. 

or training AFI-GAN, AF extractor, and target detector, we use the 

rain 2017 set. When training AFI-GAN and AF extractor, we down- 

ample the training images by a factor of 2 for generating low- 

esolution images, and use original ones as high-resolution images. 

or ablation study and comparisons, we use v al2017 and test − dev 

ets for evaluating detectors. We use the standard COCO-style met- 

ics. We evaluate box AP box and mask AP mask (average precision 

ver IoU = 50:5:95). For boxes and masks, we also compute AP 50 

IoU = 50%), and AP 75 (IoU = 75%), AP S , AP M 

, and AP L (for different 

izes of objects). 
9 
.1. Implementation details 

We use Detectron2 for implementing all detectors and net- 

orks. For learning AFI-GAN, we implement and train BiFPN, 

AFPN, and FPN with different backbones provided in Detectron2, 

nd use them as a F . We then adversarially train the AF interpo- 

ator and the feature patch discriminator from scratch with target 

 by optimizing Eqs. (1) and (2) . We use stochastic gradient de- 

cent (SGD) with 0.9 momentum and 0.0 0 01 weight decay. We 

rain them by using 8 Titan Xp GPUs for 150k iterations. We set 

 learning rate of 0.001, and decay it by a factor of 0.1 at 120k

terations. 

For learning the multi-scale AF extractor M, we design M by 

ubstituting all interpolation modules of multi-scale feature extrac- 

ors (e.g. BiFPN, PAFPN, and FPN) with the AF interpolator. For in- 

tance segmentation, we attach the Mask R-CNN head on the AF 

xtractor. For the AF interpolator and the feature patch discrimi- 

ator, we reuse the learned parameters by the previous AFI-GAN 

raining. However, other the parameters of the multi-scale AF ex- 

ractor are initialized. We then train the multi-scale AF extractor 

nd feature patch discriminator by minimizing Eq. (3) and max- 

mizing Eq. (1) . Here, we also use the same SGD optimizer, and 

rain them for 270k iterations with a mini-batch including 16 tar- 

et images. We set a learning rate to 0.02 and decay it by a factor

f 0.1 at 210k and 250k iterations. 

When training a target detector, we change interpolation mod- 

les of the multi-scale feature extractors with the trained AF in- 

erpolator. However, for training and testing target detectors, we 

aintain the default setting parameters of the detectors. As target 

etectors, we select RetinaNet [11] , FCOS [13] , Faster R-CNN [16] , 

ask R-CNN [12] , CenterMask [14] , and Cascade R-CNN [15] since 

hey can be good baselines as one-stage and two-stage detectors. 

e implement all the detectors by incorporating the AF inter- 

olator. We train these detectors using 1x schedules ( ∼12 COCO 

pochs). For applying the Swin transformer [31] for our detector, 

e replace the SGD optimizer with the AdamW optimizer and set 

 learning rate to 0.0 0 01. We train them using 3x schedules ( ∼37

OCO epochs) for achieving better accuracy scores. 

.2. Comparison with state-of-the-arts methods 

In this evaluation, we compare our proposed method with other 

ethods on test − dev and v al2017 sets. As mentioned, we first 

rain the AF interpolator or the multi-scale AF extractor and then 

pply them for several one- and two-stage detectors. Because we 

an reuse the AF interpolator or the whole multi-scale AF extrac- 

or, we mark G and M as shown in Table. 2 . For all the detectors

hown in Table 1 and 2 , we train our AF interpolator with the same

ackbone. 

Comparison on COCO test-dev Table 1 shows the comparison re- 

ults on COCO test − dev . For this comparison, we implement a 

ot of detectors using different interpolation methods. Furthermore, 

e implement and evaluate our detectors with different backbones 

e.g. R-50-FPN, R-50-PAFPN, R-50-BiFPN, S-101-FPN, S-101-PAFPN, 

win-T-BiFPN, and Swin-L-BiFPN). Compared to our 12 detectors 
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Fig. 5. Qualitative comparison of NN interpolation and the proposed AFI-GAN on detection results. Both are trained based on Mask R-CNN R-50-FPN for 12 COCO epochs. All 

images are from COCO test − dev set. Refer to our supplementary video for more detection results. 
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Fig. 6. AF interpolator G architecture with 5 residual blocks ( RB ). 
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sing the AF interpolator (AFI) with their counterparts using NN 

shown in the 2nd row of Table 1 ), our detectors show the much

etter box and mask scores. More specifically, the box and mask 

AP scores are improved by about 2.2% and 1.6% on average, re- 

pectively. Furthermore, we compare our method with the recent 

etectors. Our method reports the remarkable accuracy at 57.3% 

AP on the COCO test-dev set by using a large transformer back- 

one [31] and a self-training method [45] . 

Additionally, some qualitative comparison results are shown 

n Fig. 5 , and detection and segmentation results are shown in 

ig. 8 on COCO test − dev . From these experimental results, we ver- 

fy that our method is indeed beneficial of improving detection and 

egmentation results regardless of the types of backbones and de- 

ectors. 

Effects of AF interpolator We replace interpolation modules of 

PN with the AF interpolator only without using the AF extractor. 

s shown in Table 2 , it provides 0 . 1% ∼ 1 . 1% box AP and 0 . 1% ∼
 . 8% mask AP gains although the improved APs are different ac- 

ording to the detectors. These results show that using the AF in- 

erpolator shows the better results than using the NN interpolation 

ince it can generate the higher quality of feature maps for object 

etection as also shown in Fig. 7 . 

Effects of multi-scale AF extractor In this evaluation, we use the 

rained multi-scale AF extractor as a backbone of a detector. As 

hown in Table 2 , it provides better box and mask AP gains than

sing the AF interpolator only. This is because the backbone is also 

rained better to be suitable for the AF interpolator. In particular, 

or Mask R-CNN with ResNet-50-FPN, we achieve 2.8% and 2.0% 

mprovements for AP box and AP mask compared to their counterparts 

sing the NN interpolation. As shown in Table 1 , our AF extrac- 

ors provide more AP gains for the detectors with light backbones. 

owever, it can still improve AP scores for heavy detectors. 

Comparison of G architecture To investigate the effects of G ar- 

hitectures, we implement different G with residual dense blocks 

 RDB ) and residual blocks ( RB ). The details of RDB are described in

ection 3.1 . In RB , we use 5 residual blocks instead of the 3 resid-

al dense blocks. However, for a fair comparison we maintain the 

umber of parameters of both generators to be almost same. 

For the details of the RB architecture in Fig. 6 , we feed a feature

ap of any resolution to a 3 × 3 convolution and a Leaky ReLU ac-

ivation layers ( α = 0 . 2 ). After them, we add 5 consecutive residual

locks consisting of two 3 × 3 convolution, two batch normaliza- 

ion, and one Leaky ReLU layers to learn the more informative rep- 

esentation for up-sampling. Then, one convolution and one decon- 

olution blocks are followed to scale-up the feature resolution by 
s

10 
 factor of 2. In order to make the channel dimensionality equal to 

he input, we attach a 3 × 3 convolution layer. For residual learn- 

ng, a shortcut connection is added between the deconvolved fea- 

ure and upsampled input feature by the bilinear interpolation. 

In Table 2 , we compare detectors with the different G . We found

hat the differences of box and mask AP scores are marginal in 

ost cases. This means that our AF interpolator learning method 

s not sensitive to the architecture of an interpolator. 

Speed and parameters In Table 3 , we compare the inference 

ime between detectors using NN and our method. Our method 

eeds about additional 8M parameters and delays inference time 

y about 24ms in average. This is because convolving features iter- 

tively in the AF interpolator. The speed can be improved by using 

he lighter AF interpolator. 

.3. Ablation study 

Flexibility of AF interpolator To find the effects of using the AF 

nterpolator trained by other detector’s head, we first implement 

hree AF interpolators with different heads of Mask R-CNN [12] , 

etinaNet [11] , and CenterMask [14] . We use ResNet-50-FPN as the 

ackbones of all extractors. We train the extractor with Mask R- 

NN head using P 

hr = { P hr 
2 

, . . . , P hr 
6 

} and P 

lr = { P lr 
2 

, . . . , P lr 
6 
} from the

xtractors. Once the AF extractors are trained, we train each detec- 

or with different AF extractors for 12 epochs, and evaluate them 

n the COCO v al2017 set. 

Table 3 shows the comparison results. For all the detectors, AP 

cores are improved compared to the baseline using the NN in- 

erpolation. Interestingly, the most detectors show the better APs 

hen using the AF extractors trained with the Mask R-CNN head. 

he ability of the AF interpolator might be improved more as gen- 

rating up-sampled features for the finer feature map P 2 during 

raining. This also means that we can improve the AF extractor by 

raining it with finer feature maps than P 2 . From these results, we 

ould apply a pre-trained AF extractor for any detector in practice 

ince our AF extractor has high flexibility. 
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Fig. 7. Activation maps of P 3 with different interpolations. 

Fig. 8. Detection and segmentation results of our proposed AFI-GAN. All images are from COCO test − dev set. Refer to our supplementary video for more detection results. 
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6 Note that we do not use a pre-trained AF interpolator in (A6). If AF interpolator 

is pre-trained via our adversarial learning, we can achieve more AP gains as shown 

in (A5). 
Effects of learning methods To show the effects of our learning 

ethods, based on ResNet-50-FPN, we train several Mask R-CNN 

etectors (A1–A6): (A1) is the baseline using the NN interpolation; 

A2–A6) use the AF interpolator by substituting the NN interpo- 

ation of the baseline; (A2) is trained without the multi-scale AF 

xtractor learning; (A3) is the adversarially trained detector during 

he training of multi-scale AF extractor; (A4) freezes the learned 

arameters of the AF interpolator during training of the detector; 

A5) is trained by using all our learning methods; (A6) does not 

se our adversarial learning methods. Therefore, the entire net- 

ork of (A6) is trained from end-to-end joint training without ad- 

ersarial training. 

Table 4 shows the AP scores of (A1)–(A6). For (A3), the perfor- 

ance is degraded severely because it is not trained with images 
11 
f the original resolutions. Except for (A3), other detectors using 

ur methods show the better results than (A1). When comparing 

A4) and (A5), additional fine-tuning of the AF extractor is more 

ffective at the stage of target detector training. Compared to (A1), 

A5) achieves box and mask AP gains by 2.6% and 1.8%. These re- 

ults indicate that our learning methods are beneficial of gener- 

ting up-sampled features for detection and segmentation. When 

omparing (A1) and (A6), box and mask AP scores of (A6) slightly 

ncrease by 0.2% and 0.2%, respectively. However, AP gains are too 

arginal compared to that of (A5). 6 It implies that our proposed 
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Table 8 

Comparisons of different degradation functions. All detectors are trained based on Mask R-CNN with R-50-FPN for about 12 COCO epochs. 

Degradation function AP box AP box 
50 AP box 

75 AP box 
S AP box 

M AP box 
L AP mask AP mask 

50 AP mask 
75 AP mask 

S AP mask 
M AP mask 

L 

Nearest Neighbor 41.0 61.3 45.4 25.0 45.5 51.7 37.1 58.6 39.8 18.5 39.7 52.5 

Bicubic 41.2 61.6 45.4 25.9 45.0 51.5 37.1 58.8 39.9 19.0 39.6 52.0 

Bilinear (Ours) 41.2 61.4 45.4 25.2 45.0 51.4 37.0 58.3 40.0 18.8 39.5 52.2 

Table 9 

Effects of higher times upsampling for the proposed AF interpolator. All detectors are trained with Mask R-CNN R-50 for about 

12 COCO epochs. 

Name AP box AP box 
50 AP box 

75 AP box 
S AP box 

M AP box 
L AP mask AP mask 

50 AP mask 
75 AP mask 

S AP mask 
M AP mask 

L 

B1 36.9 57.7 39.6 19.8 41.3 49.5 32.2 53.5 33.7 12.5 35.6 49.7 

B2 (Ours) 41.2 61.4 45.4 25.2 45.0 51.4 37.0 58.3 40.0 18.8 39.5 52.2 
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6

rogressive learning method allows AF interpolator to generate the 

igh quality of up-sampled features and to improve detection ac- 

uracy together. 

Multi-scale feature networks As shown in Table 5 , we provide 

omparison results among different multi-scale feature networks 

nd interpolation methods. For a fair comparison, we fix the back- 

one to ResNet-50. Furthermore, we exploit RetinaNet as a detector 

ecause BiFPN works better usually for the one-stage object detec- 

or. As a result, the box AP scores are improved when applying the 

mproved multi-scale feature representation methods and interpo- 

ation methods. In particular, when we exploit the proposed in- 

erpolation method, we show consistent improvements compared 

o NN. Therefore, it indicates that improving the interpolation is 

lso important to improve the quality of the feature maps and the 

etection results. More importantly, our AF interpolation methods 

ave indeed high flexibility over different multi-scale feature net- 

orks and can work well with the recent multi-scale feature rep- 

esentation methods. 

Interpolation method As shown in Table 6 , we train several Mask 

-CNN detectors based on the ResNet-50-FPN by applying different 

nterpolation methods. We exploit the nearest neighbor, bilinear, 

nd bicubic interpolations and our AF interpolator. Furthermore, 

e consider a network capacity (i.e. the number of parameters) to- 

ether for fair comparison. To this end, we implement NN-5conv, 

L-5conv, and BC-5conv interpolation methods by adding 5 convo- 

ution layers 7 to make the number of parameters similar to that of 

he AF interpolator. We also implement a deconvolution-based up- 

ampling method (Deconv) containing a 6 × 6 deconv layer and a 

 × 3 conv layer. It has almost the same number of parameters as 

ur AF interpolator. 

The accuracy difference between NN, BL, and BC interpolation 

ethods is so marginal. In addition, NN/BL/BC-5Conv degrade box 

nd mask APs by about 1.3% and 1.2% compared to their coun- 

erparts without 5conv. We expect that forwarding the upsampled 

eatures to the several Conv layers leads to the aggregation effect 

ithin the vicinity of each pixel. It means that semantic informa- 

ion could be learned but the localized details could be reduced 

n return. On the other hand, our AF interpolator and the Deconv 

ethod provide the better results with the similar number of pa- 

ameters compared to NN/BL/BC-5conv. It is because deconvolution 

ontains learnable parameters to upsample the features. We con- 

ecture that learnable parameters of the deconvolution affect the 

uality enhancement of upsampled features. Furthermore, in our 

mplementation, deconvolution is followed by one conv layer in 

rder to maintain the same number of parameters as NN/BL/BC- 
7 Concretely, we add more 5 convolution and 4 batch normalization layers (be- 

ween feature pyramid levels) after each interpolation method. 

i

s

e

12 
conv and the AF interpolator. Therefore, the loss of the feature 

ocality information would be less than that of NN/BL/BC-5conv. 

lso, our AF interpolator shows 1.0% and 0.3% better scores for 

ox and mask APs, respectively, compared to the deconvolution- 

ased method. It reflects that adding more layers after the simple 

nterpolation method for generating up-sampled features better is 

ot effective, but degrades the detection accuracies. However, our 

F interpolator and learning method can resolve this problem. We 

lso provide qualitative comparisons of these methods in Fig. 7 . 

ur AF interpolator can allocate higher weights within the object 

han other interpolations. From these results, we confirm that our 

nterpolation method is more appropriate for object detection. 

Importance of semantic level matching As discussed in 

ection 4.2 , a multi-scale AF extractor can also be trained by 

omparing features between different semantic levels. More con- 

retely, we feed training images of the same resolution to M and F , 

nd compare 
{

ˆ P hr 
3 

, ˆ P hr 
4 

, ˆ P hr 
5 

, ˆ P hr 
6 

}
and 

{
P hr 

2 
, P hr 

3 
, P hr 

4 
, P hr 

5 

}
when eval- 

ating the loss Eq. (3) . Table 7 shows the results. The mismatch 

etween the feature semantic levels degrades box and mask APs 

y 1.6% and 1.1%. Thus, it is crucial to compare features at the 

ame semantic level when training the multi-scale AF extractor. 

Degradation function For generating low-resolution images, we 

se bilinear interpolation as a degradation function as shown in 

ig. 1 . We also evaluate box and mask APs when applying nearest 

eighbor and bicubic interpolation methods. As shown in Table 8 , 

ll the methods produce almost similar scores. It means that our 

earning methods are not sensitive to the image degradation func- 

ions. 

Higher times upsampling In Table 9 , we perform higher times 

psampling by using the AF interpolator. To this end, (B1) itera- 

ively uses the AF interpolator to scale-up the feature P 5 by 2x, 

x, and 8x. Therefore, we generate ˆ P 4 , ˆ P 3 , and 

ˆ P 2 features by us- 

ng the P 5 feature only. On the other hand, (B2) uses the AF in-

erpolator to upsample multi-scale features by 2 times as men- 

ioned in Section 4.3 . Thus, compared to (B2), (B1) does not ex- 

loit lateral connections [3] since it requires P 5 only. As a re- 

ult, (B1) achieves much lower accuracies than (B2). We conjec- 

ure that the localization power of generated features is reduced 

ecause of the absence of the lateral connections which can add a 

ore accurately localized feature from a fewer subsampled feature 

ap. 

. Conclusion 

In this paper, we have proposed a novel adversarial feature 

nterpolator for multi-scale feature representation. We have pre- 

ented an AFI-GAN architecture and learning methods to train it 

ffectively. From the extensive ablation study and comparison with 
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tate-of-the-art detectors, our method indeed is beneficial to en- 

ance detection and segmentation accuracies. Another important 

enefit of our method is its high flexibility. Indeed, we have shown 

ur AF interpolator can be applicable for the many recent detec- 

ors, and multi-scale feature extractors without much effort. Albeit 

he end-to-end joint learning between our AF interpolator and a 

arget detector is possible, the detection accuracy improvement is 

ather marginal. Once the pre-trained AF interpolator from our ad- 

ersarial learning is provided, this problem can be addressed as 

roved in our experiment. Because we open our code and pre- 

rained AF models to the public, we believe that our method can 

e a solid feature interpolator for convolutional detectors. For fu- 

ure works, we focus on generating high quality of multi-scale fea- 

ure maps for object recognition tasks. To this end, a recent De- 

oising Diffusion Probabilistic Model (DDPM) can be adopted since 

t generates better upsampled features compared to GAN methods 

ia iterative refinement steps for log-likelihood-based objectives. 

e will extend our methods by applying other vision tasks (e.g. 

ose estimation and scene understanding) which use multi-scale 

eature representation. 
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