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ABSTRACT

Recent convolutional detectors learn strong semantic features by generating and combining multi-scale
features via feature interpolation. However, simple interpolation incurs often noisy and blurred features.
To resolve this, we propose a novel adversarially-trained interpolator which can substitute for the tra-
ditional interpolation effortlessly. In specific, we design AFI-GAN consisting of an AF interpolator and a
feature patch discriminator. In addition, we present a progressive adversarial learning and AFI-GAN losses
to generate multi-scale features for downstream detection tasks. However, we can also finetune the pro-
posed AFI-GAN with the recent multi-scale detectors without the adversarial learning once a pre-trained
AF interpolator is provided. We prove the effectiveness and flexibility of our AF interpolator, and achieve
the better box and mask APs by 2.2% and 1.6% on average compared to using other interpolation. More-
over, we achieve an impressive detection score of 57.3% mAP on the MSCOCO dataset. Code is available

at https://github.com/inhavl-shlee/AFI-GAN.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the advances in deep convolutional neural networks
(CNNs), the convolutional object detectors [1,2] have shown the
remarkable accuracy improvement. To improve the robustness over
the scale variations of objects, the state-of-the-art detectors are
constructed based on the multi-scale feature representation. For
multi-scale object detection, some architectures [3-6] are designed
and used for base networks (i.e. backbone) of detectors. Among
them, a feature pyramid network (FPN) [3] develops top-down
feature propagation and provides the way to use multi-scale
features across all scale levels. For boosting lower layer features,
path aggregation FPN (PAFPN) [4] designs the extra bottom-up
pathway following the top-down pathway.

Inspired by these works, many multi-scale feature methods
[5-7] for object detection have been also presented. In specific,
[5-7] design additional feature propagation pathway for better
feature representation. Also, detection methods [8,9] are developed
for using multi-scale features effectively for better detection.

In those works based on multi-scale feature representation,
the main process is to resize feature maps before propagating
feature maps to the next scale level. In general, the bottom-up
and top-down feature maps are downsampled and upsampled,
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respectively. As a result, the feature resolution at the previous level
can be fitted to it at the next level on the same pathway, but also
combined with features forwarded from the different pathway.
However, simple interpolation methods (e.g. nearest neighbor and
bilinear) are still exploited when increasing the feature resolution.
As shown in Wang et al. [10], these interpolations cause noisy
and blurred feature maps. Using these features as an input of a
detector also degrades the detection accuracy.

To resolve this problem, we aim at developing a novel fea-
ture interpolator which can produce up-sampled features used for
multi-scale feature learning. In order to learn this interpolator
via adversarial learning, we propose a new generative adversar-
ial network (AFI-GAN) consisting of an AF interpolator and a fea-
ture patch discriminator. Furthermore, we present a new integral
loss which can make our AFI-GAN appropriate more for multi-task
learning to multi-scale object detection and segmentation.

For learning AFI-GAN, we perform adversarial training between
the AF interpolator and the feature patch discriminator with an
adversarial feature up-sampling loss. As a result, the AFI-GAN can
learn a generic up-sampled feature representation from an input
feature. Subsequently, we incorporate the AFI-GAN with a multi-
scale feature extractor by replacing the interpolation module with
the AF interpolator. Then, for learning the multi-scale AF extractor,
the adversarial training between the multi-scale AF extractor and
the feature patch discriminator is followed by using the integral
loss including object detection and adversarial feature up-sampling
losses.
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Fig. 1. Proposed AFI-GAN training procedures which consisting of (a) AFI-GAN training detailed in Section 4.1, (b) multi-scale AF extractor training described in Section 4.2,
and (c) target detector training described in Section 4.3. Note that the multi-scale network and head network of a target detector can be replaced with the other one as

shown in Fig. 3 and Section 4.3.

Note that learning the interpolator that upsamples a feature
map is still challenging because up-sampled outputs should en-
hance or preserve object locality and discriminability after the in-
terpolation. To address this, our core idea is to leverage the multi-
scale feature network (e.g. FPN [3], PAFPN [4], and BiFPN [6]) as
a target feature generator during these AFI-GAN training. To this
end, we feed original and downsampled images to the feature net-
work, and then extract feature maps at each pyramid level for both
images. Then, multi-scale features from the downsampled image
are forwarded to the AF interpolator, and the up-sampled ones are
then compared with the corresponding features extracted from the
original image by the feature patch discriminator. Finally, the AF
interpolator is trained adversarially with the feedback of the fea-
ture patch discriminator as in Fig. 1.

Once the AFI-GAN is trained, we can use it for interpolation
directly. However, the joint training with a target detector allows
our AF interpolator to be more suitable for the specific detection
task. In practical, we emphasize that the pre-training of AFI-GAN
shown in Fig. 1 can be omitted because the reuse of the AFI-GAN
trained with other backbones is also possible. This indicates that

our AFI-GAN can learn generalized up-sampled features and have
high flexibility over different backbones. To prove our AFI-GAN, we
have implemented several different versions of target detectors by
using RetinaNet [11], Mask R-CNN [12], FCOS [13], and CenterMask
[14] representing anchor-based one-stage or two-stage detectors,
and anchor-free detectors. We have achieved improvements of box
and masks APs by 2.2% and 1.6% on average compared to the same
detectors using other interpolation. We have also shown the exten-
sive ablation study with different backbones and detectors.

The summarization of the main contributions of this paper is
(i) proposition of a novel AFI-GAN to generate up-sampled features
for multi-scale feature learning and be applicable easily for other
convolutional detectors; (ii) proposition of the AFI-GAN losses for
generating the high quality of up-sampled features and improving
detection accuracy together; (iii) proposition of a progressive ad-
versarial learning to improve the interpolation ability of AFI-GAN
step-by-step for a specific detection task as shown in Algorithm 1;
(iv) extensive evaluation and consistent mAP improvement by im-
plementing various versions of AFl-based detectors with the recent
multi-scale feature extractors (i.e. FPN [3], PAFPN [4], and BiFPN
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Algorithm 1: Proposed AFI-GAN training.

Input : Mini-batch of image set I = {I{”,
pre-trained F.
Output: Trained AF interpolator G and detector T
1 /| Sec 4.1: Learning G and D while freezing F
2 fork; =1, ..., K; do
3 | Extract (13,*;:, PQ:) « (G(F(IL:)),F(I’,}I))

a | Train D by maximizing Lgg, (fv;g:, PQ;) in Eq. (1)

Ir\N
LT}, and

5 | Train G by minimizing Lap (f’zq, PZ:) in Eq. (2)

6 [/ Sec 4.2: Learning M embedded G and D while freezing F
7 fork, =1, ..., K; do

s | Extract PZ;, P;;; « 1\/1(0(1};2 )),F(I,’ng)

9 | Train D by maximizing Lqqy, (Pﬁ;, J,XS(PZ;)) by Eq. (1)
10 | Train M by minimizing Ly (f’ﬁ;, ¢XS(PZ£)) by Eq. (3)

1 /| Sec 4.3: Learning T with G
12 for k3 =1, ..., K3 do
13 L Train T by minimizing LDET(T(G(II’{‘;))) as in Sec. 4.3.

[6]) and recent detection networks (i.e. Faster-RCNN [3], RetinaNet
[11], Mask R-CNN [12], Cascade R-CNN [15], FCOS [13], and Center-
Mask [14]).

2. Related work

We discuss previous works on deep object detection, multi-
scale representation, and interpolation methods, which are related
to our work.

Deep object detection There are two main approaches in the re-
cent deep object detection, which are anchor-based and anchor-
free object detection. The anchor-based object detection has
been flourishing since deep convolutional detectors using anchors
[16] showed significant improvement on several detection bench-
marks [17]. In addition, the anchor-based detection can be divided
into two-stage and one-stage methods. The two-stage detection
methods first generate regions of interest (Rols) with the region
proposal network, and then refine Rols with the followed R-CNN.
Mask R-CNN [12] attaches a mask head to the two-stage detec-
tor [16] for accurate pixel-wise segmentation. Multi-stage detec-
tion methods [15] can refine Rols iteratively in a cascade man-
ner. HON [18] exploits a hierarchical objectness network to im-
prove the localization quality of the region proposal network. Peng
et al. [19] attach a context-aware module into the detection head
network in order to improve detection accuracies using high-level
semantic information. On the other hand, the one-stage detec-
tors predict detections directly without the region proposal. SSD
[20] produces predictions of different scales from feature maps of
different scales using the predefined anchors. RetinaNet [11] ad-
dresses the class imbalance problem by introducing a focal loss.

Recently, the anchor-free object detection methods reduce the
computational complexity and hyper-parameters for anchor gener-
ation. FCOS [13] introduces the centerness branch to refine cen-
ter areas of a box. CenterMask [14] adds a spatial attention-guided
mask branch to FCOS. ATSS [2] introduces the automatic positive
and negative sample selection method based on a statistical ap-
proach for objects in order to improve accuracies of both FCOS
[13] and RetinaNet [11].

Furthermore, there are some efforts [21] to apply adversarial
learning for improving object detection. However, they exploit an
adversarial loss in order to improve the Rol feature representation
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for small objects. Compared to these works, our works more focus
on enhancing the whole image feature maps.

Multi-scale representation In order to achieve the robustness to
object scale variation and the better detection, feature pyramids
(or multi-scale features) are employed for the multi-scale feature
representation. SSD [20] combines multi-scale features extracted
from a bottom-up pathway. MDFN [9] concatenates multi-scale
features to use the semantic and contextual information by deep
features. Gated CNN [8] integrates multi-scale features to provide
robust features for accurate object detection. On the other hand,
recent works [3-6] learn multi-scale features from several different
pathways. FPN [3] first shows that using bottom-up and top-down
features is effective for scale-invariant detection. PANet [4] fur-
ther introduces an extra bottom-up pathway. Inspired by these
works, many network architectures using cross-scale [5,6] have
been presented. NAS-FPN [5] discovers a suitable architecture for
feature pyramid by using the Neural Architecture Search algorithm
[22]. BiFPN [6] applies top-down and bottom-up feature fusion re-
peatedly with bi-directional features. mSODANet [23] introduces
the bi-directional feature aggregation module to refine the multi-
scale feature from BiFPN [6] and to improve object detection in
aerial images. Still, all these methods exploit a naive interpolation
method when increasing feature resolution. Therefore, we focus on
developing a feature scaling-up method for learning feature pyra-
mid more accurately. Remarkably, our method can be applicable
easily for all these previous methods by replacing the interpolation
method with ours.

Interpolation methods Interpolation methods can be categorized
into traditional interpolation and learning-based interpolation. Tra-
ditional interpolation methods upsample an input image based on
its own value without learning an additional model. Therefore,
these methods are intuitive and easy to implement. For instance,
a nearest-neighbor interpolation copies the value from the near-
est pixel without consideration of other pixels. Bilinear and bicu-
bic interpolations compute the value by evaluating the values of
nearby pixels. However, they tend to occur noisy and blurred re-
sults as shown in Wang et al. [10]. Learning-based interpolation
exploits additional weight and bias parameters in order to upscale
an input resolution. Transposed convolution, also called deconvo-
lution [24], upsamples an input by calculating the weighted value
from the learned parameters and pixel values. A sub-pixel layer
[25] performs upsampling by expanding the channels of the out-
put features and then rearranging these points. Due to the usage
of additional parameters for upsampling, the learning-based inter-
polation methods show better results compared to traditional in-
terpolations. Compared to the existing interpolation methods, our
works more focus on improving a detection accuracy by generating
upsampled feature maps for multi-scale feature representation. To
this end, we design the AF interpolator with both bilinear interpo-
lation and deconvolution to improve the quality of the upsampled
feature map. Moreover, we propose an adversarial learning method
with a detection loss in order to increase feature locality and dis-
criminability after enlarging the feature map.

3. Adversarial feature interpolation GAN

For generating up-sampled features at any scale which can be
applicable for multi-scale feature learning, we first design AFI-GAN
consisting of an AF interpolator and a feature patch discriminator
as discussed in Section 3.1. For training the AFI-GAN from scratch,
we exploit the existing multi-scale feature network as a target fea-
ture generator, and match up-sampled features from an AF interpo-
lator with the corresponding features of the same resolution from
the target generator as mentioned in Section 3.2. Furthermore, we
present an adversarial progressive learning to avoid it overfitted
as shown in Section 4. However, note again that we can train a
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(b) Feature Patch Discriminator (D)

Fig. 2. Proposed AFI-GAN architecture consisting of (a) an AF interpolator and (b) a feature patch discriminator.
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Fig. 3. Multi-scale feature extractors for multi-scale feature learning. Figure 3 shows the structures of (a) a feature pyramid network (FPN) [3], (b) a path aggregation
network (PAFPN) [4], and (c) a bi-directional feature pyramid network (BiFPN) [6], respectively. In the interpolation module (Interp.) of each network, we replace a nearest
neighbor interpolation with our AF interpolator. In our implementation, we set the number of BiFPN layers Dy;s,, to 3 and 7 for ResNet [30]-BiFPN and Swin Transformer

[31]-BiFPN, respectively.

target detector embedded with the AF interpolator at once as in
Section 4.3 if a pre-trained AF interpolator by using any multi-
scale feature network is provided. Thus, some pre-training phases
to warm-up the AFI-GAN can be omitted in practice.

3.1. Overall architecture

As shown in Fig. 2, the AF interpolator G generates an up-
sampled feature map P for an input feature map of lower resolu-
tion feature P'". On the other hand, the feature patch discriminator
D identifies between patches extracted within the up-sampled fea-
ture P'" and high-resolution feature P"" (For more details of Ph",
refer to Section 3.2).

For the interpolator G, we feed P!" of any resolution to a 3 x 3
convolution and a Leaky ReLU activation (LReLU) layers (o = 0.2).
After them, we add 3 consecutive residual dense blocks [26] and
a shortcut connection which bypasses them in order to exploit the
more informative representation for up-sampling.! Concretely, each
residual dense block contains 5 densely connected 3 x 3 convolu-
tion layers with growth rate of 32, 4 Leaky RelU layers, and one
shortcut connection. For stabilizing the training, residual scaling
[27] (B = 0.2) is applied before the identity mapping. Then, one
convolution and one deconvolution blocks are followed to scale-up
the feature resolution by a factor of 2. Lastly, we add a 3 x 3 con-
volution layer and an additional shortcut connection between the
deconvolved feature and upsampled input feature by the bilinear
interpolation. We exploit the deconvolved feature in order to up-
sample features. However, we additionally upsample the feature by
using the bilinear interpolation in order to exploit an input feature
representation fully with a low computational cost. As a result, we
can generate the high quality of upsampled feature maps by using
both features.

The discriminator D, which is a modified version of a patch dis-
criminator [28], convolves P or P by using three convolution
blocks with 512, 1024, and 1024 channels. Here, each block con-
tains a 3 x 3 convolution, a batch normalization, and a Leaky ReLU
activation layer (o = 0.2). Then, the class per feature map pixel is
predicted by a 3 x 3 convolution and a sigmoid activation function.
As an activation function of AFI-GAN, we choose LeakyReLU due to

1 A comparison of different G architectures is given in Table 2.

its robustness of optimization [29]. In addition, it is often used for
training GAN methods [28].

3.2. Adversarial training with multi-scale features

Given an image I, we denote multi-scale features F(I) = {B|N; <
i < Ne}, where F is a multi-scale feature extractor, B is a feature
map at level i, and Ns; and N are the first and last scale levels
of top-down feature maps from finer to coarser resolution. Here,
a feature map is denoted as P, = {Pf}gzl, where C is the channel
of the feature map. Given a high-resolution image I"" and its low-
resolution counterpart I, we define the problem of learning G and

D with F using the adversarial min-max loss Lg4,:

Ne W H

n;in max Bt (1) > Wi > log (D9D (I)fhr)x,y)
i=N; x=1y=1

Ne W; H;

1
+ By pe (1) XN:W 21: ZI: log (1 — Dy, (Ge, (P,!r))x_y)
i=Ns x=1y=

To solve this, we scale-down I"" to I'" =|*S (I'"), where |*
means the down-sampling by a downscaling factor s(<1). We
then extract multi-scale features P'" = {Pr, ..., Pi", ... Pir} and

Pr={pIr ... PI",.... P} by feeding I'" and I" to F, respectively.
Thus, our main idea behind this formulation is that we make G
learn the feature distribution of the high-resolution image at each
scale by fooling a D that is trained to discriminate up-sampled fea-
ture patches from high-resolution feature patches. For multi-scale
features, W; and H; are the width and height of muti-scale features
along the scale level i, respectively. x and y are indexes of the fea-
ture pixel coordinates. 8p and ¢ are parameters of the discrimina-
tor and interpolator, respectively. Also, the resolutions of Pf‘r and
D(P,.’") are same but their channel dimensions are C and 1, respec-
tively, according to Section 3.1. For multi-scale feature learning, we
exploit BiFPN [6] as F. However, it could be replaced with other
multi-scale feature extractor (e.g. PAFPN [4] and FPN [3]).2 Also,
we set s to 0.5 since the resolution of P,_; in BiFPN is higher than

2 In our implementation, we use BiFPN [6], PAFPN [4], and FPN [3] for F as shown
in Tables 1 and 5.



Table 1

Comparison with other detectors on COCO test — dev. ‘R’, ‘S’, ‘X', and ‘Swin’ denote ResNet [30], ResNeSt [40], ResNeXt [44], and Swin-Transformer [31], respectively. ‘«’, ‘}’, and ‘¢’ represent our re-implementation, multi-scale

testing results, and training with COCO unlabeled set via self-training [45], respectively.
Interpol. Backbone Detector APP APEY APE APE™ AP} APP* APk AP APk APk AP AP}k
NN X-101-64x4d-FPN MALF [35] 47.0 66.1 51.2 30.2 50.1 58.9 - - - - - -
NN VoVNetV2-99-FPN CenterMask [14] 46.5 - - 28.7 48.9 57.2 41.8 - - 24.4 44.4 54.3
NN X-101-64x4d-FPN-DCN ATSS* [2] 50.7 68.9 56.3 33.2 52.9 62.4 - - - - - -
NN X-101-64x4d-FPN HTC [1] 471 - - - - - 41.2 63.9 44.7 22.8 43.9 54.6
NN R-101-FPN-DCN TSP-RCNN [36] 474 66.7 51.9 29.0 49.7 59.1 - - - - - -
NN X-101-64x4d-FPN-DCN Dynamic DETR [37] 49.3 68.4 53.6 30.3 51.6 62.5 - - - - - -
NN SENet-154-FPN-DCN TSD* [38] 51.2 71.9 56.0 33.8 54.8 64.2 - - - - - -
NN X-101-64x4d-FPN-DCN OTA* [39] 51.5 68.6 57.1 34.1 53.7 64.1 - - - - - -
NN S-200-FPN-DCN [40] Cascade R-CNN* 53.3 72.0 58.0 35.1 56.2 66.8 471 - - - - -
NN Res2Net-101-FPN-DCN GFLV2* [41] 53.3 70.9 59.2 35.7 56.1 65.6 - - - - - -
NN X-152-32x8d-FPN-DCN PAAF [42] 53.5 71.6 59.1 36.0 56.3 66.9 - - - - - -
NN X-101-64x4d-RFP DetectoRS¥ [7] 55.7 74.2 61.1 37.7 58.4 68.1 48.5 72.0 53.3 31.6 50.9 61.5
NN Res2Net-101-BiFPN-DCN CenterNet2*F [43] 56.4 74.0 61.6 38.7 59.7 68.6 - - - - - -
NN R-50-FPN RetinaNet” 37.6 57.3 40.2 21.7 40.8 46.6 - - - - - -
NN R-50-FPN FCOS* 39.7 58.9 432 23.6 42.7 48.6 - - - - - -
NN R-50-BiFPN FCOS* 40.6 59.4 438 241 43.3 49.6 - - - - - -
NN R-50-FPN Faster R-CNN* 383 59.5 414 223 40.7 47.9 - - - - - -
NN R-50-FPN Mask R-CNN* 39.0 60.0 42.5 22.6 414 48.7 35.5 57.0 37.8 19.5 37.6 46.0
NN R-50-PAFPN Mask R-CNN* 39.0 59.8 42.5 22.8 41.3 48.8 35.6 56.9 38.1 19.8 37.6 46.3
NN R-50-FPN CenterMask” 39.7 58.1 43.2 23.0 42.3 49.7 35.2 55.7 37.8 19.1 37.6 45.8
NN R-50-BiFPN CenterMask” 40.6 58.7 44.2 235 43.2 50.1 35.8 56.3 385 19.5 38.1 46.1
NN S-101-FPN Cascade R-CNN* 48.5 67.1 52.7 30.1 51.3 61.3 41.8 64.6 45.3 24.8 44.4 54.4
NN S-101-PAFPN Cascade R-CNN* 48.6 67.2 52.7 29.8 51.6 61.2 41.9 64.7 45.3 24.5 44.5 54.4
NN Swin-T-BiFPN Cascade R-CNN* 46.3 64.0 50.0 28.6 48.7 58.6 - - - - - -
NN Swin-T-BiFPN Cascade R-CNN*® 48.3 65.9 52.3 30.5 51.3 60.6 - - - - - -
AFI (ours) R-50-FPN RetinaNet” 40.1 59.4 43.2 24.2 435 48.3 - - - - - -
AFI (ours) R-50-FPN FCOS* 42.6 61.4 46.4 26.3 45.5 51.3 - - - - - -
AFI (ours) R-50-BiFPN FCOS* 43.9 62.4 47.6 27.2 46.7 53.0 - - - - - -
AFI (ours) R-50-FPN Faster R-CNN* 39.8 60.4 434 24.0 43.0 48.0 - - - - - -
AFI (ours) R-50-FPN Mask R-CNN* 41.5 62.0 45.7 25.6 449 49.9 374 59.1 40.2 21.8 40.1 46.8
AFI (ours) R-50-PAFPN Mask R-CNN* 40.9 61.3 44.6 23.8 43.8 51.4 36.9 58.5 39.5 20.3 39.2 48.0
AFI (ours) R-50-FPN CenterMask” 424 60.5 46.2 25.8 45.7 51.6 37.5 58.1 40.5 213 40.5 47.5
AFI (ours) R-50-BiFPN CenterMask” 43.8 61.7 47.6 26.9 46.6 53.4 38.2 59.3 41.3 223 40.7 48.4
AFI (ours) S-101-FPN Cascade R-CNN* 49.3 67.7 534 31.1 52.3 61.5 42.5 65.3 45.9 25.7 45.1 54.4
AFI (ours) S-101-FPN Cascade R-CNN* 51.6 70.1 56.0 34.1 54.5 64.1 44.8 67.7 48.8 28.3 474 57.4
AFI (ours) S-101-PAFPN Cascade R-CNN* 49.4 67.8 534 30.9 52.2 61.9 42.6 65.3 46.0 25.7 45.0 54.8
AFI (ours) S-101-PAFPN Cascade R-CNN* 51.6 70.1 56.0 34.0 54.4 64.6 44.7 67.7 48.7 28.2 47.0 57.5
AFI (ours) Swin-T-BiFPN Cascade R-CNN* 47.8 66.1 51.5 29.4 50.5 60.3 - - - - - -
AFI (ours) Swin-T-BiFPN Cascade R-CNN*® 51.7 70.2 55.9 33.0 55.0 65.0 - - - - - -
AFI (ours) Swin-T-BiFPN Cascade R-CNN*%F 53.8 72.4 58.3 36.3 56.6 67.1 - - - - - -
AFI (ours) Swin-L-BiFPN Cascade R-CNN*® 54.9 73.0 59.6 36.0 58.3 69.0 - - - - - -
AFI (ours) Swin-L-BiFPN Cascade R-CNN*%* 57.3 76.0 62.2 39.8 60.6 71.2 - - - - - -

abg "H-'S pub 297 'H-'S

S9€601 (£20Z) 8EL uOBIUZ029Y ULV
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Table 2

Comparison of detectors using different interpolation methods and multi-scale feature extractors on COCO val2017. All detectors are trained based on R-50-FPN for about 12 COCO epochs. All times are reported per image on a

same Titan Xp GPU.
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it of P, by a factor of 2 (Ns < i < Ne). For BiFPN and PAFPN, we ex-
ploit the final multi-scale features as a target feature when train-
ing AFI-GAN, respectively. This is because they are the final out-
put features after repeated bottom-up and top-down propagations
in multi-scale feature extractors as shown in Fig. 3. In the next
Section 4, we use BiFPN as a base feature extractor F, and denote
P; as an i-th level multi-scale feature map for simplicity.

4. Training

The goal of the AFI-GAN training is to generate a multi-scale
AF extractor for a target detector. We first train a generalized AFI-
GAN which can scale-up any lower-resolution features by a factor
of 2. To train it, we perform adversarial training between G and D
by exploiting multi-scale features of F as target features. We then
build a multi-scale AF extractor by changing all the interpolation
modules of the feature extractor with the pre-trained AF interpola-
tor. The multi-scale AF extractor and D can be trained adversarially
in the alternative manner. Basically, we can train them by solving
Eq. (1). However, we add additional content (pixel-wise L1) and
detection losses. As a result, we can improve the quality of up-
sampled features per scale and multi-scale representation for ob-
ject detection. Finally, we can train several FPN-based Mask R-CNN,
RetinaNet, and CenterMask detectors with the trained AF interpo-
later by minimizing its detection loss without adversarial train-
ing. For more clarity, we present the AFI-GAN training as shown
in Algorithm 1.

4.1. AFI-GAN

For generating upsampled features, we perform adversarial
training between an AF interpolator G and a feature patch dis-
criminator D as shown in Fig. 1(a). We first define an adversarial
feature up-sampling loss Lar(G, D, F) = Leone (G, F) + ALygy (G, D, F)
composed of the content loss and adversarial loss of Eq. (1).
Leone evaluates the discrepancy between upsampled ones of low-
resolution features and its counterpart high-resolution features at
each scale level i using a pixel-wise L1 distance. On the other hand,
Logy,, encourages G to produce upsampled features by fooling D. By
minimizing Lyr with respect to 0, we can train G as:

(PIn),,, = (Go (PM)y,

FAX Nl 0 S0 ~1og (D, (6o, (1)), ).

where A is a hyper parameter for controlling the feedback of D and
tuned to 0.001. C is the channel of the feature map, and is set to
256.3

On the other hand, when training D, we exploit a generic GAN
loss described in Eq. (1). D tries to maximize the probabilities of
identifying the correct labels for the given target and up-sampled
feature patches from G. From this adversarial training, AFI-GAN can
learn a generalized up-sampled feature representation for an input
feature.

Ne
i 1 C W; H;
min 3 o et T Tyl
i=N;s

(2)

4.2. Multi-scale AF extractor

We design a multi-scale AF extractor by embedding the trained
AF interpolator into BiFPN. Simply, we change all the interpolation
modules of BiFPN with the AF interpolator.* As shown in Fig. 1(b),

3 The number of output channels of the feature map is different from that of the
original BiFPN [6]. Also, we use the same C = 256 for PAFPN [4] and FPN [3].

4 The comparison of different interpolation methods are provided in Table 6 and
Fig. 7.
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we attach box and mask heads on the extractor, and we denote
this AFI-based detection architecture as M for simplicity. For ad-
versarial training, we also use the feature patch discriminator D
and the trained parameters of D are re-used. We define an inte-
gral loss in consideration of detection accuracy and the quality of
upsampled features as Lyt (M, D, F) = Lys (M, D, F) + Lpgr (M). Here,
Lper (M) is the overall detection loss which is slightly different ac-
cording to the detection heads. In our case, we use losses of Mask
R-CNN [12], RetinaNet [11], FCOS [13], CenterMask [14], and Cas-
cade R-CNN [15] when attaching their heads to our AF extrac-
tor. Similar to Eq. (2), Lar(M, D, F) is the adversarial feature up-
sampling loss evaluating the discrepancy between upsampled fea-
tures and target features as well as encouraging G to generate up-
sampled features by deceiving D. While training M by minimizing
Liny(M, D, F), F is not trained, but it just provides target features
to D. Because Ly contains the detection loss Lpgy, optimizing our
network with respect to Liyr enhances the localization and dis-
crimination powers of our AF interpolator.

Note that for L,r evaluation we first scale-down I"" to resample
Ir = %05 ("), and then provide I" and I"" to M and F to extract
PIr={Pir, ... PIr} and P = {Plr, ... Pir}, respectively, as shown
in Fig. 1(b). We then extract a set of up-sampled features Ph" =
{Goe(PY). ... Go.(P¥)}. but scale-down P'" to | **>(P'r). This is
because of the following reasons: (1) To compare up-sampled and
high-resolution features at the same scale (or pyramid) level i
since semantic information levels are different across feature pyra-
mid levels as also discussed in Lin et al. [3]. For instance, we
can feed the same I"" to M and F to compare {134’1", P, ﬁgr,@hr}

and {Pl, Pi", P", PI"}, respectively. However, when evaluating Ly,
the mismatch of feature semantic levels degrades mAP to about
1.6% shown in Table 7. (2) To reduce GPU usage. Alternatively, we
can feed the original I'" and 1*2 (I"") to M and F, and make the
level-wise feature comparison between {Gg_(Pir)..... Gy (Pi")}
and F(1*2 (I")) without the downsampling. However, it is very
costly for GPU memory. In return, for evaluating Lpgr (M) with the
input of | %05 (1), we need to fit the ground truth of box loca-
tions and mask regions to | **> (I'") of the resolution. In order to
train parameters ), of the multi-scale AF extractor, we minimize
the following Lar (M, D, F):

e Z SETHIE
7C [sWi] LsH;] e
x Zl Z] 21 (L)) = (B, (3)
S 1 [sWi] [sH;]
“Z [SW[5H] ; y21 log (Den (), y/)v

where [sW;] and |sH;]| are width and height of downsampled tar-
get feature by a factor s(=0.5) at level i. The same A of Eq. (2) is
used. Compared to Eq. (2), an up-sampled feature at previous level
is used as an input of the next scale level, where an up-sampled
feature is extracted as P" =M, (P’l]) N; < i< Ne. Therefore,
Lar (M, D, F) makes M suitable more for multi-scale representation.

For adversarial training of D, we denote Ly, in Eq. (1) as the

adversarial loss of D. We use |*%° (Ph") and Phr as real and fake
input features. In the similar manner, by maximizing Lyq, , we can

train D, and leverage its predictions for the generated P"" for train-
ing M.

4.3. Target detector

As shown in Fig. 1(c), we apply our trained AF interpolator for
training a target detector T which exploits a multi-scale feature ex-
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tractor as a backbone. More concretely, we change all the interpo-
lation modules of T with the AF interpolator only, but do not reuse
other trained parameters of the feature extractor. In order to train
T, we minimize the overall detection loss Lpgr defined by the head
type of T as discussed in Section 4.2.

Note that the main difference from the previous training on
the multi-scale AF extractor feeds the original image itself to T
without downsampling. Therefore, the AF interpolator can be fine-
tuned to be suitable more for the detection in high resolution im-
ages through this training.

In addition, we fine-tune the parameters of the AF interpola-
tor while training T.”> In practice, once a pre-trained AF interpo-
lator model is given, we can train T directly without the training
of AFI-GAN and AF extractor. This indicates that the training com-
plexity of T using the AF interpolator can be significantly reduced.
We prove the effectiveness of reusing the pre-trained models in
Table 3. Furthermore, it is also feasible to reuse the whole multi-
scale AF feature extractor for T instead of using the AF interpolator
only. In this case, the mAP of T can be improved further as shown
in Table 2.

As shown in Fig. 4, we combine various recent detection heads
into our architecture, and implement several versions of AFI-based
detectors with a different detection head T. We present the details
of each detection head as follows:

4.3.1. Mask R-CNN

This anchor-based two-stage object detection method [12] has
two-stages for region proposal and refinement. At the first stage,
the detector generates region proposals by feeding multi-scale
features and reference boxes (anchors) into RPN [16]. After ap-
plying non-maximum suppression (NMS) on proposals with fore-
ground classification scores and IoU scores, features of proposals
are cropped by Rol align operation. At the second stage features of
proposals are forwarded through 3 parallel head branches (box re-
gression, classification, and class-agnostic mask prediction heads)
in order to refine the box locations, and predict a class confidence
and object mask regions for each proposal. Then, per-class NMS is
applied to candidate boxes in order to yield final results. For train-
ing Mask R-CNN, the loss function of Mask R-CNN LDET is defined
as:

M M M M M
LDET = Lcls + Lloc + Lmask + Lrpn* (4)

where L’C‘/I’S and L%’C are log (i.e. cross entropy) and smooth L1 losses,

respectively, as described in Gll‘Sthk [32]. Llr‘n/’ask is the average bi-
nary cross-entropy loss. The loss L ,pn of the region proposal net-
work is composed of the binary cross entropy and smooth L1

losses for classification and box regression.

4.3.2. RetinaNet

This anchor-based one-stage object detection method
[11] presents the focal loss to solve the class imbalance prob-
lem. The detector consists of a backbone network and two subnets
for classification and box regression. For a backbone network,
it extracts multi-scale features. Then, the classification subnet
predicts the classification probability at each spatial position for
each of the predefined 9 anchors and 80 object classes. The box
regression subnet infers the 4 x 9 linear outputs for predicting
spatial location for each object. Then, RetinaNet decodes box pre-
dictions from top 1k candidates per multi-scale feature extractor
level, after thresholding detector confidence 0.05. After merging
top predictions from all levels, per-class NMS is applied to get

5 When freezing the learned parameters of the AF interpolator during T training,
the mAP of T is degraded as shown in Table 4
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Table 3
Comparison results of target detectors trained by different AF extractors on COCO val2017. All detectors are trained based on R-50-FPN for
about 12 COCO epochs. All times are reported per image on a same Titan Xp GPU.

Target detector Interpol Head for multi-scale APP* APk # Params Time (ms)
AF extractor

Mask R-CNN NN - 38.6 35.2 44 M 72
(Baseline)
Mask R-CNN AFI Mask R-CNN 41.2 37.0 52 M 118
Mask R-CNN AFI RetinaNet 40.0 36.2 52 M 118
Mask R-CNN AFI Centermask 40.5 36.5 52 M 117
RetinaNet NN - 374 - 37 M 88
(Baseline)
RetinaNet AFI Mask R-CNN 39.6 - 45 M 101
RetinaNet AFI RetinaNet 38.2 - 45 M 102
RetinaNet AFI Centermask 39.7 - 45 M 107
Centermask NN - 39.8 35.1 51 M 73
(Baseline)
Centermask AFI Mask R-CNN 421 37.2 59 M 84
Centermask AFI RetinaNet 40.9 35.9 59 M 86
Centermask AFI Centermask 41.7 36.8 59 M 85
Table 4
Effects of progressive learning. ‘FR’ means freezing the pre-trained parameters of the AF interpolator during target detector training.
Name Interpol. AFI-GAN  Multi-scale AF extractor ~ Target detector ~FR ~ AP*™  APiX  Aph  ppmask  apmask  ppmask
Al NN 38.6 59.4 42.1 35.2 56.3 375
A2 AFI (Ours) v v 394 60.3 43.2 35.8 57.0 38.4
A3 AFI (Ours) v v 32.1 52.1 33.7 30.0 50.2 31.5
A4 AFI (Ours) v v v v 39.9 60.2 43.7 36.2 57.1 39.1
A5 AFI (Ours) v v v 41.2 614 454 37.0 58.3 40.0
A6 AFI (Ours) v 38.8 59.6 423 35.4 56.6 37.7
Table 5

Comparisons with different multi-scale feature methods and the proposed method on COCO val2017. All detectors are trained
for about 12 COCO epochs.

Interpolation ~ Backbone  Multi-scale feature method  Detector APP™  ppbax ppbex  ppbx - ppbex - ppbox
NN R-50 FPN RetinaNet 374 56.7 40.3 231 41.6 48.3
NN R-50 PAFPN RetinaNet 37.7 56.7 40.4 23.0 42.2 48.2
NN R-50 BiFPN RetinaNet 38.2 574 40.8 224 42.4 48.8
AFI (ours) R-50 FPN RetinaNet 39.6 58.8 42.6 244 43.8 49.5
AFI (ours) R-50 PAFPN RetinaNet 39.7 58.8 43.0 25.7 44.0 48.8
AFI (ours) R-50 BiFPN RetinaNet 41.9 60.8 44.9 26.8 45.7 52.6

Table 6
Comparison of interpolation methods for accuracy and network capacity on the COCO val2017 set. All detectors are trained with Mask R-CNN R-50-FPN for about
12 COCO epochs.

Interpolation method for FPN ~ AP*® AP APSZ AP APR™ AP Ap™®k  Apmask  ppmask  ppmask  ppmask  apmask 4 params

Nearest Neighbor (NN) 386 595 421 225 420 499 352 563 375 172 377 503  44M
Bilinear (BL) 386 594 422 225 419 500 352 564 375 169 377 507 44 M
Bicubic (BC) 385 594 423 231 418 492 351 564 376 173 375 502 44 M
NN-5conv 374 570 406 213 404 485 340 540 366 160 360 490 53 M
BL-5conv 374 570 407 214 405 481 340 541 364 159 360 488 53 M
BC-5conv 370 566 403 214 398 481 338 538 363 157 360 490 53 M
Deconv 402 610 440 239 435 521 367 580 394 179 389 529 53 M
AF interpolator (Ours) 412 614 454 252 450 514 370 583 400 188 395 522  54M
Table 7
Effect of semantic level matching for Lar.
Lar (M. D, F) APP* APIY APRZ APP® APRY APP AP™SF APRP APTSE AP APReF AP
Different feature levels 396 601 432 236 429 511 359 571 383 176 385 516

Same feature levels (Ours)  41.2 61.4 454 25.2 45.0 514 37.0 58.3 40.0 18.8 39.5 52.2

final results. For training this RetinaNet, the loss function LgET is 4.3.3. FCOS

defined as: This anchor-free one-stage object detection method [13] intro-
duces the centerness branch, which refines center areas of a box.
e = LR+ LR (5)  The detector consists of a backbone and 3 head branches (clas-
sification, regression, and centerness). The detector is based on a
where Lchs and Lfoc are the focal and smooth L1 losses, respectively. multi-scale feature extractor. In order to determine a box location,
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Fig. 4. Various recent detection network heads. For multi-scale AF extractor and target detector training as in Sections 4.2 and 4.3, we minimize the overall detection loss

Lper which is different according to the mounted detection head.

the regression branch predicts 4-dimensional normalized offsets
(left, right, top, and bottom) to adjust box lengths at the center
point. The classification branch infers a 80-dimensional vector per
box when classifying 80 different object categories. The centerness
branch measures how close the predicted center point is to the
corresponding GT point. For predicting this score, a single layer
branch is added. By multiplying the classification score of a box
with its centerness, the box score can be re-weighted. As a result,
during NMS, the low-quality boxes can be suppressed better. The
loss of FCOS LE, is

LEET = LZS + Lfeg + Lgtrs (6)
where Lf,_ is the focal loss as in Lin et al. [11] and Lf, is the loU

F

loss as in Yu et al. [33]. L, is the binary cross entropy loss for
predicting a centerness score ranging from 0 to 1.

4.3.4. CenterMask

This [14] is an improved version of FCOS [13] by attaching a
spatial attention-guided mask branch (SAG-Mask) for instance seg-
mentation. Therefore, it has the similar architecture as FCOS de-
scribed in Section 4.3.3. However, CenterMask adds a mask head
named as a spatial attention-guided mask head in order to predict
segmentation mask inside the cropped regions in a per-pixel man-
ner. Also, a mask scoring head [34] is attached for recalibrating the
classification score in consideration of predicted mask quality. For
training this, the following detection loss LCDET is used:
LE)ET = Lgls + Lgeg + Lstr + Lfnask + Lgmskiou’ (7)
where LG LG, LS, are the same as in FCOS as described in
Section 4.3.3. Lfnusk is the same average binary cross-entropy loss
as in Mask R-CNN as described in Section 4.3.1. L€ is the L2

A X maskiou
loss for regressing MaskloU as in Huang et al. [34].

5. Experiments

In this section, we prove the effects of our method via ablation
studies and comparisons with state-of-the-arts (SOTA) methods. All
experiments are conducted on the MS COCO dataset [17] contain-
ing 118k images for training (train2017), and 5k images for val-
idation (val2017). For testing, 20k images without labels are in-
cluded and results can be evaluated only on the challenge server.
For training AFI-GAN, AF extractor, and target detector, we use the
train2017 set. When training AFI-GAN and AF extractor, we down-
sample the training images by a factor of 2 for generating low-
resolution images, and use original ones as high-resolution images.
For ablation study and comparisons, we use val2017 and test — dev
sets for evaluating detectors. We use the standard COCO-style met-
rics. We evaluate box APP™ and mask AP™K (average precision
over IoU = 50:5:95). For boxes and masks, we also compute APsq
(IoU = 50%), and AP75 (IoU = 75%), APs, APy, and AP, (for different
sizes of objects).

5.1. Implementation details

We use Detectron2 for implementing all detectors and net-
works. For learning AFI-GAN, we implement and train BiFPN,
PAFPN, and FPN with different backbones provided in Detectron2,
and use them as a F. We then adversarially train the AF interpo-
lator and the feature patch discriminator from scratch with target
F by optimizing Eqgs. (1) and (2). We use stochastic gradient de-
scent (SGD) with 0.9 momentum and 0.0001 weight decay. We
train them by using 8 Titan Xp GPUs for 150k iterations. We set
a learning rate of 0.001, and decay it by a factor of 0.1 at 120k
iterations.

For learning the multi-scale AF extractor M, we design M by
substituting all interpolation modules of multi-scale feature extrac-
tors (e.g. BiFPN, PAFPN, and FPN) with the AF interpolator. For in-
stance segmentation, we attach the Mask R-CNN head on the AF
extractor. For the AF interpolator and the feature patch discrimi-
nator, we reuse the learned parameters by the previous AFI-GAN
training. However, other the parameters of the multi-scale AF ex-
tractor are initialized. We then train the multi-scale AF extractor
and feature patch discriminator by minimizing Eq. (3) and max-
imizing Eq. (1). Here, we also use the same SGD optimizer, and
train them for 270k iterations with a mini-batch including 16 tar-
get images. We set a learning rate to 0.02 and decay it by a factor
of 0.1 at 210k and 250k iterations.

When training a target detector, we change interpolation mod-
ules of the multi-scale feature extractors with the trained AF in-
terpolator. However, for training and testing target detectors, we
maintain the default setting parameters of the detectors. As target
detectors, we select RetinaNet [11], FCOS [13], Faster R-CNN [16],
Mask R-CNN [12], CenterMask [14], and Cascade R-CNN [15] since
they can be good baselines as one-stage and two-stage detectors.
We implement all the detectors by incorporating the AF inter-
polator. We train these detectors using 1x schedules (~12 COCO
epochs). For applying the Swin transformer [31] for our detector,
we replace the SGD optimizer with the AdamW optimizer and set
a learning rate to 0.0001. We train them using 3x schedules (~37
COCO epochs) for achieving better accuracy scores.

5.2. Comparison with state-of-the-arts methods

In this evaluation, we compare our proposed method with other
methods on test —dev and val2017 sets. As mentioned, we first
train the AF interpolator or the multi-scale AF extractor and then
apply them for several one- and two-stage detectors. Because we
can reuse the AF interpolator or the whole multi-scale AF extrac-
tor, we mark G and M as shown in Table. 2. For all the detectors
shown in Table 1 and 2, we train our AF interpolator with the same
backbone.

Comparison on COCO test-dev Table 1 shows the comparison re-
sults on COCO test — dev. For this comparison, we implement a
lot of detectors using different interpolation methods. Furthermore,
we implement and evaluate our detectors with different backbones
(e.g. R-50-FPN, R-50-PAFPN, R-50-BiFPN, S-101-FPN, S-101-PAFPN,
Swin-T-BiFPN, and Swin-L-BiFPN). Compared to our 12 detectors
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Fig. 5. Qualitative comparison of NN interpolation and the proposed AFI-GAN on detection results. Both are trained based on Mask R-CNN R-50-FPN for 12 COCO epochs. All
images are from COCO test — dev set. Refer to our supplementary video for more detection results.

using the AF interpolator (AFI) with their counterparts using NN
(shown in the 2nd row of Table 1), our detectors show the much
better box and mask scores. More specifically, the box and mask
mAP scores are improved by about 2.2% and 1.6% on average, re-
spectively. Furthermore, we compare our method with the recent
detectors. Our method reports the remarkable accuracy at 57.3%
mAP on the COCO test-dev set by using a large transformer back-
bone [31] and a self-training method [45].

Additionally, some qualitative comparison results are shown
in Fig. 5, and detection and segmentation results are shown in
Fig. 8 on COCO test — dev. From these experimental results, we ver-
ify that our method is indeed beneficial of improving detection and
segmentation results regardless of the types of backbones and de-
tectors.

Effects of AF interpolator We replace interpolation modules of
FPN with the AF interpolator only without using the AF extractor.
As shown in Table 2, it provides 0.1% ~ 1.1% box AP and 0.1% ~
0.8% mask AP gains although the improved APs are different ac-
cording to the detectors. These results show that using the AF in-
terpolator shows the better results than using the NN interpolation
since it can generate the higher quality of feature maps for object
detection as also shown in Fig. 7.

Effects of multi-scale AF extractor In this evaluation, we use the
trained multi-scale AF extractor as a backbone of a detector. As
shown in Table 2, it provides better box and mask AP gains than
using the AF interpolator only. This is because the backbone is also
trained better to be suitable for the AF interpolator. In particular,
for Mask R-CNN with ResNet-50-FPN, we achieve 2.8% and 2.0%
improvements for AP?® and AP™* compared to their counterparts
using the NN interpolation. As shown in Table 1, our AF extrac-
tors provide more AP gains for the detectors with light backbones.
However, it can still improve AP scores for heavy detectors.

Comparison of G architecture To investigate the effects of G ar-
chitectures, we implement different G with residual dense blocks
(RDB) and residual blocks (RB). The details of RDB are described in
Section 3.1. In RB, we use 5 residual blocks instead of the 3 resid-
ual dense blocks. However, for a fair comparison we maintain the
number of parameters of both generators to be almost same.

For the details of the RB architecture in Fig. 6, we feed a feature
map of any resolution to a 3 x 3 convolution and a Leaky ReLU ac-
tivation layers (o = 0.2). After them, we add 5 consecutive residual
blocks consisting of two 3 x 3 convolution, two batch normaliza-
tion, and one Leaky ReLU layers to learn the more informative rep-
resentation for up-sampling. Then, one convolution and one decon-
volution blocks are followed to scale-up the feature resolution by

10
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Fig. 6. AF interpolator G architecture with 5 residual blocks (RB).

a factor of 2. In order to make the channel dimensionality equal to
the input, we attach a 3 x 3 convolution layer. For residual learn-
ing, a shortcut connection is added between the deconvolved fea-
ture and upsampled input feature by the bilinear interpolation.

In Table 2, we compare detectors with the different G. We found
that the differences of box and mask AP scores are marginal in
most cases. This means that our AF interpolator learning method
is not sensitive to the architecture of an interpolator.

Speed and parameters In Table 3, we compare the inference
time between detectors using NN and our method. Our method
needs about additional 8M parameters and delays inference time
by about 24ms in average. This is because convolving features iter-
atively in the AF interpolator. The speed can be improved by using
the lighter AF interpolator.

5.3. Ablation study

Flexibility of AF interpolator To find the effects of using the AF
interpolator trained by other detector’s head, we first implement
three AF interpolators with different heads of Mask R-CNN [12],
RetinaNet [11], and CenterMask [14]. We use ResNet-50-FPN as the
backbones of all extractors. We train the extractor with Mask R-
CNN head using Pi" = {Phr, ... PI"} and P'" = {P¥r, ... P'} from the
extractors. Once the AF extractors are trained, we train each detec-
tor with different AF extractors for 12 epochs, and evaluate them
on the COCO val2017 set.

Table 3 shows the comparison results. For all the detectors, AP
scores are improved compared to the baseline using the NN in-
terpolation. Interestingly, the most detectors show the better APs
when using the AF extractors trained with the Mask R-CNN head.
The ability of the AF interpolator might be improved more as gen-
erating up-sampled features for the finer feature map P, during
training. This also means that we can improve the AF extractor by
training it with finer feature maps than P,. From these results, we
could apply a pre-trained AF extractor for any detector in practice
since our AF extractor has high flexibility.
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AFI-GAN

Fig. 8. Detection and segmentation results of our proposed AFI-GAN. All images are from COCO test — dev set. Refer to our supplementary video for more detection results.

Effects of learning methods To show the effects of our learning
methods, based on ResNet-50-FPN, we train several Mask R-CNN
detectors (A1-A6): (A1) is the baseline using the NN interpolation;
(A2-A6) use the AF interpolator by substituting the NN interpo-
lation of the baseline; (A2) is trained without the multi-scale AF
extractor learning; (A3) is the adversarially trained detector during
the training of multi-scale AF extractor; (A4) freezes the learned
parameters of the AF interpolator during training of the detector;
(A5) is trained by using all our learning methods; (A6) does not
use our adversarial learning methods. Therefore, the entire net-
work of (A6) is trained from end-to-end joint training without ad-
versarial training.

Table 4 shows the AP scores of (A1)-(A6). For (A3), the perfor-
mance is degraded severely because it is not trained with images

1

of the original resolutions. Except for (A3), other detectors using
our methods show the better results than (A1). When comparing
(A4) and (A5), additional fine-tuning of the AF extractor is more
effective at the stage of target detector training. Compared to (A1),
(A5) achieves box and mask AP gains by 2.6% and 1.8%. These re-
sults indicate that our learning methods are beneficial of gener-
ating up-sampled features for detection and segmentation. When
comparing (A1) and (A6), box and mask AP scores of (A6) slightly
increase by 0.2% and 0.2%, respectively. However, AP gains are too
marginal compared to that of (A5).° It implies that our proposed

6 Note that we do not use a pre-trained AF interpolator in (A6). If AF interpolator
is pre-trained via our adversarial learning, we can achieve more AP gains as shown
in (A5).
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Table 8

Comparisons of different degradation functions. All detectors are trained based on Mask R-CNN with R-50-FPN for about 12 COCO epochs.
Degradation function ~ AP™* AP APS%  APE™  APM* AP Apmesk ppmusk  ppmask  ppmask  ppmask  ppmask
Nearest Neighbor 41.0 61.3 454 25.0 45.5 51.7 371 58.6 39.8 18.5 39.7 52.5
Bicubic 41.2 61.6 45.4 25.9 45.0 51.5 371 58.8 39.9 19.0 39.6 52.0
Bilinear (Ours) 41.2 61.4 45.4 25.2 45.0 51.4 37.0 58.3 40.0 18.8 39.5 52.2

Table 9

Effects of higher times upsampling for the proposed AF interpolator. All detectors are trained with Mask R-CNN R-50 for about

12 COCO epochs.

Name APP*APIY APRZ APE AP APP* AP™®F APREY APTEF APPSH APESF AP
B1 369 577 396 198 413 495 322 535 337 125 356 497
B2 (Ours) 412 614 454 252 450 514 370 583 400 188 395 522

progressive learning method allows AF interpolator to generate the
high quality of up-sampled features and to improve detection ac-
curacy together.

Multi-scale feature networks As shown in Table 5, we provide
comparison results among different multi-scale feature networks
and interpolation methods. For a fair comparison, we fix the back-
bone to ResNet-50. Furthermore, we exploit RetinaNet as a detector
because BiFPN works better usually for the one-stage object detec-
tor. As a result, the box AP scores are improved when applying the
improved multi-scale feature representation methods and interpo-
lation methods. In particular, when we exploit the proposed in-
terpolation method, we show consistent improvements compared
to NN. Therefore, it indicates that improving the interpolation is
also important to improve the quality of the feature maps and the
detection results. More importantly, our AF interpolation methods
have indeed high flexibility over different multi-scale feature net-
works and can work well with the recent multi-scale feature rep-
resentation methods.

Interpolation method As shown in Table 6, we train several Mask
R-CNN detectors based on the ResNet-50-FPN by applying different
interpolation methods. We exploit the nearest neighbor, bilinear,
and bicubic interpolations and our AF interpolator. Furthermore,
we consider a network capacity (i.e. the number of parameters) to-
gether for fair comparison. To this end, we implement NN-5conv,
BL-5conv, and BC-5conv interpolation methods by adding 5 convo-
lution layers’ to make the number of parameters similar to that of
the AF interpolator. We also implement a deconvolution-based up-
sampling method (Deconv) containing a 6 x 6 deconv layer and a
3 x 3 conv layer. It has almost the same number of parameters as
our AF interpolator.

The accuracy difference between NN, BL, and BC interpolation
methods is so marginal. In addition, NN/BL/BC-5Conv degrade box
and mask APs by about 1.3% and 1.2% compared to their coun-
terparts without 5conv. We expect that forwarding the upsampled
features to the several Conv layers leads to the aggregation effect
within the vicinity of each pixel. It means that semantic informa-
tion could be learned but the localized details could be reduced
in return. On the other hand, our AF interpolator and the Deconv
method provide the better results with the similar number of pa-
rameters compared to NN/BL/BC-5conv. It is because deconvolution
contains learnable parameters to upsample the features. We con-
jecture that learnable parameters of the deconvolution affect the
quality enhancement of upsampled features. Furthermore, in our
implementation, deconvolution is followed by one conv layer in
order to maintain the same number of parameters as NN/BL/BC-

7 Concretely, we add more 5 convolution and 4 batch normalization layers (be-
tween feature pyramid levels) after each interpolation method.
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5conv and the AF interpolator. Therefore, the loss of the feature
locality information would be less than that of NN/BL/BC-5conv.
Also, our AF interpolator shows 1.0% and 0.3% better scores for
box and mask APs, respectively, compared to the deconvolution-
based method. It reflects that adding more layers after the simple
interpolation method for generating up-sampled features better is
not effective, but degrades the detection accuracies. However, our
AF interpolator and learning method can resolve this problem. We
also provide qualitative comparisons of these methods in Fig. 7.
Our AF interpolator can allocate higher weights within the object
than other interpolations. From these results, we confirm that our
interpolation method is more appropriate for object detection.

Importance of semantic level matching As discussed in
Section 4.2, a multi-scale AF extractor can also be trained by
comparing features between different semantic levels. More con-
cretely, we feed training images of the same resolution to M and F,
and compare {P4r P Pir Pir} and {Phr, Pi" PAT PiT} when eval-
uating the loss Eq. (3). Table 7 shows the results. The mismatch
between the feature semantic levels degrades box and mask APs
by 1.6% and 1.1%. Thus, it is crucial to compare features at the
same semantic level when training the multi-scale AF extractor.

Degradation function For generating low-resolution images, we
use bilinear interpolation as a degradation function as shown in
Fig. 1. We also evaluate box and mask APs when applying nearest
neighbor and bicubic interpolation methods. As shown in Table 8,
all the methods produce almost similar scores. It means that our
learning methods are not sensitive to the image degradation func-
tions.

Higher times upsampling In Table 9, we perform higher times
upsampling by using the AF interpolator. To this end, (B1) itera-
tively uses the AF interpolator to scale-up the feature P5 by 2x,
4x, and 8x. Therefore, we generate Py, P, and P, features by us-
ing the P; feature only. On the other hand, (B2) uses the AF in-
terpolator to upsample multi-scale features by 2 times as men-
tioned in Section 4.3. Thus, compared to (B2), (B1) does not ex-
ploit lateral connections [3] since it requires Ps; only. As a re-
sult, (B1) achieves much lower accuracies than (B2). We conjec-
ture that the localization power of generated features is reduced
because of the absence of the lateral connections which can add a
more accurately localized feature from a fewer subsampled feature
map.

6. Conclusion

In this paper, we have proposed a novel adversarial feature
interpolator for multi-scale feature representation. We have pre-
sented an AFI-GAN architecture and learning methods to train it
effectively. From the extensive ablation study and comparison with
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state-of-the-art detectors, our method indeed is beneficial to en-
hance detection and segmentation accuracies. Another important
benefit of our method is its high flexibility. Indeed, we have shown
our AF interpolator can be applicable for the many recent detec-
tors, and multi-scale feature extractors without much effort. Albeit
the end-to-end joint learning between our AF interpolator and a
target detector is possible, the detection accuracy improvement is
rather marginal. Once the pre-trained AF interpolator from our ad-
versarial learning is provided, this problem can be addressed as
proved in our experiment. Because we open our code and pre-
trained AF models to the public, we believe that our method can
be a solid feature interpolator for convolutional detectors. For fu-
ture works, we focus on generating high quality of multi-scale fea-
ture maps for object recognition tasks. To this end, a recent De-
noising Diffusion Probabilistic Model (DDPM) can be adopted since
it generates better upsampled features compared to GAN methods
via iterative refinement steps for log-likelihood-based objectives.
We will extend our methods by applying other vision tasks (e.g.
pose estimation and scene understanding) which use multi-scale
feature representation.
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