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Abstract

In a convolutional object detector, the detection accuracy can
be degraded often due to the low feature discriminability
caused by geometric variation or transformation of an object.
In this paper, we propose a deformable part region learning in
order to allow decomposed part regions to be deformable ac-
cording to geometric transformation of an object. To this end,
we introduce trainable geometric parameters for the location
of each part model. Because the ground truth of the part mod-
els is not available, we design classification and mask losses
for part models, and learn the geometric parameters by mini-
mizing an integral loss including those part losses. As a result,
we can train a deformable part region network without extra
super-vision, and make each part model deformable accord-
ing to object scale variation. Furthermore, for improving cas-
cade object detection and instance segmentation, we present a
Cascade deformable part region architecture which can refine
whole and part detections iteratively in the cascade manner.
Without bells and whistles, our implementation of a Cascade
deformable part region detector achieves better detection and
segmentation mAPs on COCO and VOC datasets, compared
to the recent cascade and other state-of-the-art detectors.

Introduction
The goal of object detection or instance segmentation is to
determine meaningful object locations with boxes or masks
from an image. For accurate and fast detection, the progress
has been made by developing powerful features (He et al.
2016) and effective detection architecture (Ren et al. 2015;
Redmon et al. 2016; Liu et al. 2016) over the last decades.
Among them, convolutional object detectors (Bolya et al.
2019; Fu, Shvets, and Berg 2019; Tian et al. 2019; Zhao
et al. 2019) have shown significant improvements.

However, these convolutional detectors are still limited in
handling the large geometric transformations and variations
caused by object pose, scale, viewpoints, and part deforma-
tion. The main reason is that the most CNNs used for feature
extraction have fixed structures of CNN modules (i.e. convo-
lution, pooling, and RoI pooling layers) as discussed in (Dai
et al. 2017). As a result, it is difficult to detect non-rigid ob-
jects and objects with different scales or poses by using the
convolutional detectors. In order to improve the robustness
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to the geometric transformation, we propose a deformable
part region network (DPR-Net) that makes decomposed part
models deformable adaptively according to object scales or
poses. Our DPR-Net introduces a deformable part genera-
tion module, and it contains trainable geometric parameters
to transform spatial locations and scales of each part region
according to object scale variation. This differs with other
deformable detection methods (Girshick et al. 2015; Wan,
Eigen, and Fergus 2015; Dai et al. 2017) which learn pa-
rameters to adjust spatial locations of parts. In addition, we
present a weakly supervised learning to train DPR-Net be-
cause the ground truth of part models is unavailable. To this
end, we evaluate classification and segmentation losses of
part models by comparing scores and masks predicted from
fused part features with their counterpart ground truth. By
minimizing an integral loss including these part losses, the
gradients of the loss can affect the transformation of part
models more directly. It also makes our DPR-Net can be
end-to-end trainable without extra supervision.

In order to improve the quality of detected boxes and
masks progressively, we present multi-stage refinement via
the deformable part model learning based on a Cascade
architecture. Similar to (Cai and Vasconcelos 2018; Chen
et al. 2019; Zhang et al. 2019), our Cascade deformable
part region detector (Cascade D-PRD) consists of a series of
consecutive detection header to predict classes or locations.
However, our Cascade D-PRD can improve those qualities
of whole and part models together by feeding the refined
boxes at previous step to DPR-Net. Subsequently, it can
improve part boxes by re-decomposing the refined boxes.
Then, Cascade D-RPD can produce stronger semantic RoI
features with the refined part and whole RoIs, and exploit
them for training consecutive box and mask headers.

To sum up, the main contributions of this paper can be
summarized as follows: (i) proposition of the DPR-Net for
transforming object part regions against object geometric
variation (ii) proposition of the weakly supervised object de-
tection and segmentation to learn part models without extra
supervision (iii) proposition of a new cascade scheme for
refining object and part predictions progressively.

Our single D-PRD achieves the state-of-the-art results
without employing other performance improvement meth-
ods on MSCOCO19. We also make extensive implementa-
tion of D-PRDs with various feature extractors and provide
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thorough ablation study to prove the effectiveness of the D-
PRD. Moreover, our Cascade D-PRD can boost mAP by 3%
to D-PRD. Without bells and whistles, our Cascade D-PRD
achieves impressive 49.2 box and 42.4 mask APs. We im-
prove the box and mask APs by 2.1 and 1.2 points compared
to the recent HTC (Chen et al. 2019) with the same back-
bones. Another benefit is that our DPR-Net can be applied
easily for the existing anchor-based detectors with simple
modification.

Related Works
The recent convolutional detectors can be categorized into
two- (He et al. 2017; Bae 2019; Huang et al. 2019) and one-
stage (Lin et al. 2017b; Bolya et al. 2019; Tan, Pang, and Le
2020) detectors in terms of the usage of region proposal net-
work (RPN). In general, the former detectors shows the bet-
ter accuracy but lower speed due to the extra stage by RPN.
For reducing the complexity further, anchor-free detectors
(Law and Deng 2018; Lu et al. 2019; Tian et al. 2019) find
top peaks within a key point heatmap per class, and con-
sider the peaks as center positions of objects. In addition,
there are many efforts to improve learning of the multi-scale
feature maps (Zhao et al. 2019; Ghiasi, Lin, and Le 2019;
Tan, Pang, and Le 2020) by adding new pathways and mod-
ules. Multi-stage detectors based on a cascade architecture
(Cai and Vasconcelos 2018; Chen et al. 2019; Vu et al. 2019)
are designed for high-quality detection. These detectors en-
hance the quality of boxes or masks by refining the predic-
tions progressively with a series of detection headers.

Because the recent detectors mentioned above are based
on CNNs with fixed geometric structures, they are inherently
limited to model geometric transformation. For the robust-
ness to the geometric transformation, deformable part de-
tectors (Girshick et al. 2015; Wan, Eigen, and Fergus 2015)
based on CNN have been presented. In addition, a spatial
transformation network (STN) (Jaderberg et al. 2015) is pre-
sented to learn affine transformation parameters within a
CNN for a given image. To reduce the model capacity of
the STN, the inverse STN (Lin and Lucey 2017) propagates
warped parameters instead of warped images. In deformable
CNN (Dai et al. 2017), spatial offsets are augmented and
learned to adjust spatial locations of convolution filtering
and RoI pooling. To generate different shapes of default
boxes, anchor learning (Yang et al. 2018; Ke et al. 2020)
is presented.

Inspired by these recent works, we present D-PRD in or-
der to accommodate geometric transformations of decom-
posed part models. It can also learn regression parameters
of part models from end-to-end learning. Compared to (Gir-
shick et al. 2015; Wan, Eigen, and Fergus 2015; Dai et al.
2017), our D-PRD can adjust spatial sizes as well as spa-
tial locations of part models. In an attempt to improve de-
tection and segmentation accuracy more, we further design
a Cascade D-PRD architecture for refining detected boxes
and masks using whole and part models based on a series of
D-PRD heads.

Weakly supervised object localization (Zhang et al.
2018b; Zhong et al. 2021) and detection (Zeng et al. 2019;
Zhong et al. 2020) localize single or multiple objects with

image category labels. However, our weak supervised learn-
ing is to detect part boxes with category labels only.

Deformable Part Region Detector
For improving the robustness of convolutional detectors over
geometric transformations, we propose a deformable part re-
gion detector (D-PRD), and provide the whole architecture
of the D-PRD in Fig. 1. We introduce a deformable part re-
gression layer to transform the spatial locations and sizes of
decomposed part boxes. In addition, classification and seg-
mentation losses for part models are designed to minimize
the difference between the predicted outputs (i.e. class la-
bels and masks) of a combined feature from part regions and
their ground truth. Since the output features of part models
are affected by transformation parameters of the deformable
part layer, the parameters of the decomposed part models are
learned by reducing these losses.

Preliminaries of D-PRD
We use region decomposition assembly network (RDA-Net)
(Bae 2019) for fusing different region features. Let d =
(x, y, w, h) be a bounding box, where x, y, w and h are the
center positions, width and height. Then, smaller decom-
posed regions {dp|p ∈ {left, right, bottom, upper}} can be
generated by dividing d into several part regions (as shown
in Fig. 2). In order to generate strong semantic features,
RDA-Net performs multi-stage refinement for RoI features
of different regions. At stage l(> 1), features of different
regions are compared, and a stronger semantics feature xl is
kept only. In specific, after the RoIAlign (He et al. 2017),
we can extract a warped feature xwhole for d at the cor-
responding scale (or pyramid) level of multi-scale pyramid
features (e.g. FPN (Lin et al. 2017a), PANet (Liu et al. 2018),
and BiFPN (Tan, Pang, and Le 2020)) in consideration of
their box sizes. Similarly, we can extract warped part feature
maps {xp

1|p ∈ {left, right, bottom, upper}} of the same size
for each part box {dp|p ∈ {left, right, bottom, upper}}.

At each l stage, the bi-directional features xp
l and xq

l of
different regions are merged to produce the stronger fea-
ture xr

l using the region assembly block (RAB) consisting
of four consecutive 3x3 conv filters, ReLU functions, and
one element-wise max unit over each channel as shown in
Fig. 1. As a result, a combined feature xr

l is the output of the
RAB for the input features xp

l and xq
l of as follows:

xr
l = RAB (xp

l ,x
q
l ) (1)

p (or q) represents each part (i.e. left, right, bottom, upper). r
means combined parts (i.e. left-right(l/r), bottom-upper (b/u)
and comb). On the other hand, xwhole is passed through sev-
eral conv layers, and is also compared with the xcomb

3 to pro-
duce xcomb

4 . Then, the last refined feature xcomb
4 is used as

an input of box and mask heads. The resolutions of xwhole,
xp
l , and xr

l are the same sizes at all the stages.

Deformable Part Region Network (DPR-Net)
Given a feature map of sizeH×W , we apply kA anchors (or
reference boxes) per location. Each anchor d = (x, y, w, h)
can be decomposed into kP parts (kP = 4). Therefore, there
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Figure 1: Proposed D-PRD: As a feature extractor, the FPN is used. In the DPR-Net, kp part boxes for each proposal are
transformed by the outputs of the part box transformation layer. In each RDA-Net, we extract the features xcomb

3 refined with
part model features only and xcomb

4 refined with part and whole object features. For training D-PRD, we minimize the integral
loss Eq. (3) including part losses. Note that all the trainable parameters of RDA networks for detection and segmentation are
shared for reducing the model complexity.

existHWkA anchors andHWkAkP part boxes in total. We
assume that the kP part boxes of the anchor are also removed
when an anchor is removed by the NMS or score threshold-
ing. This assumption avoids the additional training for pre-
dicting classification scores (or objectness score) per part
box, and improves detection speed. In addition, we assume
that each part box can be transformed independently. In this
case, we need kR = 4 parameters to encode coordinates of
a part box. Therefore, the part box transformation layer has
kA × kR × kP outputs in order to transform kR coordinates
of kA × kP part boxes for each location.

We use the kA×kR×kP outputs as offsets of coordinates
of kA× kP part boxes. From the lowest to highest, they cor-
respond to (x, y, w, h) coordinates of the left, right, upper
and bottom part boxes as given in Fig. 2. For part box trans-
formation, we apply offsets {∆xp,∆yp,∆wp,∆hp} for co-
ordinates of each part box using the inverse parameterization
of the box regression (Girshick et al. 2014) as

x̂p = xp + ∆xp · wp, ŷp = yp + ∆yp · hp,
ŵp = exp(∆wp) · wp, ĥp = exp(∆hp) · hp, (2)

where x̂ is a transformed box and p indicates left, right,
upper, and bottom parts. We clip the part boxes to image
boundaries to place them within the boundaries. Also, when
d̂p has a low overlap ratio over dp, we use the dp as a part
box instead of using d̂p. This prevents a transformed part
box to be out of an object region too much. (We provide the
experimental results in Fig. 4). Figure 2 shows the genera-
tion process of deformable part boxes.

Detection and Instance Segmentation Heads
From RDA-Nets, we can extract the combined strong feature
responses. We feed the combined xcomb

3 and xcomb
4 to the

box and mask heads, respectively. Here, xcomb
3 is a refined

feature by merging part features only, then xcomb
4 is refined

by fusing xcomb
3 and xwhole of the whole object model. The

box head includes two fully connect (FC) layers with 1024
neurons. The output of the last FC layer for xcomb

4 is con-
nected to the object classification and box regression lay-
ers with cls + 1 neurons and 4 × cls neurons, where cls
is the number of object classes and the one is added due to
the background class. On the other hand, the FC output for
xcomb
3 is connected to the same classification layer only dur-

ing training.
For instance segmentation, we also combine the outputs

xcomb
3 and xcomb

4 of the RDA-Net with the mask head. Since
a pixel-wise labeling is required, a stack of fully convolu-
tional network (FCN) (Shelhamer, Long, and Darrell 2017)
is usually used as the mask head due to its flexibility, robust-
ness, and fast speed of training and inference. We follow the
implementation of (He et al. 2017) for the mask head. It has
a stack of four consecutive 3×3 convs, a 2×2 deconv layer
with stride 2 for up-sampling the spatial resolution of the
inputs by a factor of 2. Then, 1× 1 conv is followed to pro-
duce cls masks. We use ReLU in the hidden layers. Also,
cls masks from the input xcomb

3 are extracted by using the
same mask head. These masks for the part features are used
during training only. In addition, we attach a MaskIoU head
after the mask head because it can evaluate the confidence

97



Figure 2: Deformable part region generation: when apply-
ing kA anchors for a feature map of a size H ×W , HWkA
proposals are generated. Each proposal consists of kP boxes
with kR coordinates. We learn kP × kR transformation pa-
rameters in the part box transformation layer, and transform
each part box by applying the predicted outputs in the part
box generation layer.

of each mask more accurately by calculating the pixel-level
IoU between the predicted mask and the counterpart ground
truth. Following the implementation of (Huang et al. 2019),
the input RoI feature and output mask of the mask head are
concatenated along the channel dimension, and then the 4
convolutional and 2 fully connected layers are followed to
predict the the MaskIoU score per class from the concate-
nated feature.

Learning D-PRD with Weak Supervision
Because we should localize object part regions without the
ground truth of object parts, it can be considered as a weakly
supervised learning problem. To handle this problem, we de-
fine object parts with four rectangle boxes by decomposing
a RoI region. We then use them as reference part boxes. In
other words, spatial locations and scales of part boxes are
transformed relative to their reference boxes. In return, these
decomposed boxes provide good starting points when solv-
ing the complex weak-supervision problem.

To lean the transformation parameters of part boxes, we
cannot apply the conventional box regression loss (Girshick
et al. 2014) directly, which minimizes a mismatch between
ground truth and predicted boxes, because ground truth of
part regions is unavailable. However, the features extracted
from the part boxes still contribute to object classifica-
tion and segmentation. Therefore, we can solve the weak-
supervision problem by minimizing the box classification
and mask segmentation losses w.r.t. d̂p. We first match each
box d and the ground truth box d∗ by evaluating IoU, and as-
sign d to a positive label o∗ ∈ {1...cls} if d has an IoU more
than 0.5 over any d∗. We assign a negative label (o∗ = 0) to

d that has an IoU between 0.1 and 0.5. Let p = (p0, ..., pcls)
and pprt = (pprt,0, ..., pprt,cls) denote probability distribu-
tions over cls + 1 which are computed by feeding xcomb

3
and xcomb

4 to the box head and applying the softmax for the
outputs of the head. Then, we define classification losses of
the deformable part and whole models Lprt

cls (pprt,o∗) and
Lcls(p,o

∗), and these losses evaluate difference between
the prediction of class probabilities and ground truth labels
using the cross entropy loss. To reduce the memory burden,
the parameters of the box head used for computing p and
pprt are also shared.

In addition, we add mask losses Lmask(m,m∗) and
Lprt
mask(mprt,m∗) for the multi-task loss. These compare

m and mprt with the ground truth mask m∗. Here, mprt

and m are the outputs of the shared mask head for the inputs
xcomb
3 and xcomb

4 , respectively. To evaluate MaskIoU losses
Lmiou for part and whole models, we compute the MaskIoU
between a binary mask and its counterpart ground truth, and
then consider it as the MaskIoU target s∗ . We compute the
L2 losses to regress predicted MaskIoUs from whole s and
part sprt models over the MaskIoU target. As a result, we
present a new integral total loss by combining all the losses
with whole and part models as follows:

L (p,pprt, o∗, t, t∗,m,mprt,m∗, s, sprt, s∗)
= Lcls(p,o

∗) + λ [o ≥ 1]Lreg(t, t∗) + Lmask(m,m∗)
+Lmiou(s, s∗) + Lprt

cls (pprt,o∗)
+Lprt

mask(mprt,m∗) + Lprt
miou(sprt, s∗)

(3)
Lmask and Lprt

mask are the mask losses defined with the av-
erage binary cross entropy. The mask head produces m ={
m1, ...,mcls

}
and mprt =

{
mprt,1, ...,mprt,cls

}
of res-

olution hmask
roi × wmask

roi over cls classes. When evaluating
Lmask and Lprt

mask, a mask predicted from an RoI associ-
ated with o∗ is compared with ground truth mask m∗ only.
The MaskIoU head also produces s = (s0, ..., scls) and
sprt = (sprt,0, ..., sprt,cls) over cls classes. pprt,u is a pre-
dicted class probability for class u. For Lreg , we evaluate
box regression targets t and t∗ by comparing predicted box
d with its anchor and ground truth boxes for class o∗. Dur-
ing inference, the classification, mask, and MaskIoU predic-
tions from the part models are not exploited. To refine mask
scores, the predicted MaskIoU scores are multiplied with the
classification scores for the same class masks. λ = 1 in our
implementation.

Cascade Deformable Part Region Detector
The architecture of our Cascade D-PRD is presented in Fig.
3. For each cascade stage n, we refine the classification
probability pn (pprt

n ), bounding box dn, mask mn (mprt
n ),

MaskIoU score sn (sprtn ) for the predicted detection dn (dp
n)

from the previous D-PRD. In the first and last stages, we
use RDA networks for fusing different region features, and
use the combined xcomb

n,3 and xcomb
n,4 as shown in Fig. 2. In

the second stage, we use the several conv layers. The train-
able parameters of the RDA and other head networks used
in each stage are not shared. (We design this structure based
on Table 1 of the supplementary material.) We set the IoU
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Figure 3: Proposed architecture for the Cascade deformable part region detection . Here, “C” means a classification, “B” a box,
“S” a mask, and “M” a mask scoring heads. “CP”, “SP”, and “MP” are shared with “C”, “S”, and “M’. At each cascade stage n,
we feed whole xcomb

n,4 and part features xcomb
n,3 to the original (“C”, “B”, “S”, and “M”) and part (“CP”, “SP”, and “MP”) heads.

threshold to (0.5, 0.6, 0.7) from the first to last stage, and
encourage the next box and mask heads to produce higher
quality results. The outputs of the first two stages are fed to
the DRP network. By using the integral loss Eq. (3), we eval-
uate the loss per stage, and update parameters of our Cascade
detector by minimizing all the losses.

Discussion

For improving object feature discriminability, the obvious
way is to learn the global context around an object and lo-
cal details within the object. However, the main challenge
is to find meaningful regions to learn these contexts. The
meaningful region could be a larger region including other
interacting objects or background, or a smaller region con-
taining object crucial parts for the local context. To learn
the global context, (Cai et al. 2016; Chen et al. 2020; Yang
et al. 2018) fuse the holistic image and object RoI features.
However, these methods would often miss the object part de-
tails after the global feature fusion. On the other hand, (Bae
2019; Wan, Eigen, and Fergus 2015; Zhang et al. 2018a;
Zhou and Yuan 2018) can learn the local context, but learn-
ing the global context is challenging since their part models
are fixed or limited deformablity within the object. Com-
pared to those works, our DPM can learn both contexts be-
cause its high deformability of part models within or around
an object. Remarkably, the deformability is tuned for each
object class and size during the multi-task learning Eq. (3)
without any labels of part boxes (c.f. (Zhang et al. 2018a;
Zhou and Yuan 2018)).

Experimental Results

Our D-PRD and Cascade D-PRD are evaluated on
MSCOCO17 (Lin et al. 2014) and PASCAL VOC07/12 (Ev-
eringham et al. 2015) datasets. To show the effects of pro-
posed methods, we present the ablation study. Then, com-
parison results with recent detectors are provided on the
benchmark datasets.

Backbone Baseline DPR Part Loss Cascade Fixed box AP mask AP

R50-FPN

√
40.98 37.17√ √
42.20 38.83√ √ √
42.95 39.21√ √
44.33 38.46√ √ √ √
45.92 39.79√ √ √ √ √
44.61 38.67

Table 1: Ablation study on the COCO17 val set .

Implementation
We implement our D-PRD and Cascade D-PRD based on
the feature pyramid network (FPN) (Lin et al. 2017a) since
it has been widely used as a multi-scale feature extrac-
tor for detection and segmentation. We use ResNet50-FPN
(R50-FPN), ResNet101-FPN (R101-FPN) (He et al. 2016),
ResNeXt101-32x8d (X101-FPN) (Xie et al. 2017). Once
collecting feature maps {P2, P3, P4, P5, P6} of FPN, we
distribute them to the DPR and RDA networks. For the
DPR network, we use the all feature levels {P2, ..., P6}, but
{P2, ..., P5} for the RDA network. As described in (Lin et al.
2017a), we set anchor sizes to

{
322, 642, 1282, 2562, 5122

}
on {P2, ..., P6}, respectively. Also, we apply multiple an-
chor ratios {1 : 2, 1 : 1, 2 : 1} for each anchor. Therefore,
total 15 anchors are used over the pyramid.

For RoI pooling, we assign an RoI of width w and height
h (on the input image) to the corresponding pyramid level as
described in (He et al. 2016). Using the RoIAlign (He et al.
2017), we then extract warped features for whole object and
part RoIs at the corresponding level. As shown in Fig. 1,
we set the sizes of warped features to 7 × 7 and 14 × 14
for detection and segmentation, respectively. We emphasize
again that the parameters of the DPR and RDA networks are
shared across all pyramid levels and all RoIs of all levels.
We use the Detectron2.

Evaluation Setting and Learning Policy
We use the standard COCO metrics. For detection and in-
stance segmentation, box AP and mask AP scores at IoU
∈ [0.5 : 0.05 : 0.95] are considered as the most important
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Figure 4: Comparison of the Cascade D-PRD with different
backbones by changing σ. Here, σ represents a IoU score
between fixed dp and transformed d̂p part boxes. B and M
means box and mask AP scores.

Detector Parts Fusion box Mask Params Flops Memory Speed
AP AP (M) (B) (MiB) (fps)

R-FCN DPM - 34.5 - 50 - - 5.2
(D1) Fixed Concat 38.7 35.2 44 116 2110 11.7
(D2) Fixed RDA 40.8 37.6 46 117 2182 10.0
(D3) DPR Concat 41.7 38.2 44 117 2170 11.3
(D4) DPR RDA 42.9 39.2 46 118 2242 9.5

Table 2: Comparison of (D1-D4) and DPM (Dai et al. 2017)
detectors for different part models and feature fusions.

# of Parts (kP ) RDA Stages (l) box AP mask AP Speed (fps)
Mask R-CNN w/t R50-FPN (baseline) 41.00 37.20 11.29

2 2 40.78 37.58 9.02
4 3 42.95 39.21 8.60
8 4 42.96 39.21 8.18
16 5 42.82 39.10 6.65

Table 3: Effects on the number of decomposed parts.

metrics. We also use AP50, AP75, APS , APM , and APL.
Refer to (Lin et al. 2014) for more details.

We use the default learning schedules 1x or 3x (∼ 12 or
∼ 37 COCO epochs) of Detectron2 for all the evaluation be-
low. Also, all other setting parameters for training and test-
ing are same to those of Detectron2.

Ablation Experiments
To prove our methods, we provide some ablation studies. We
train and evaluate detectors on the COCO dataset.

Effects of each method: We implement our baseline de-
tector by attaching Mask R-CNN (He et al. 2017) to R50-
FPN and R101-FPN backbones. Then, we add the proposed
method step-by-step on the baseline. Table 1 shows the
scores of box AP and mask AP after applying each method.
For R50-FPN, our DPR-Net improves box and mask APs
by 1.2 and 1.7 points. We improve box and mask APs by
0.8 and 0.4 when training D-PRD with the additional Lprt

cls ,
Lprt
mask, and Lprt

miou part losses of Eq. (3). Furthermore, Cas-
cade D-PRD can improve box and mask APs by 3.0 and 0.6.
Compared to each baseline detector with R50-FPN (R101-
FPN), we boost box and mask APs by about 4.9 (4.6) and
2.6 (2.1) points. Using the DPR-Net and part losses only,

Figure 5: Gradient activations of the Cascade Mask R-CNN
(Cai and Vasconcelos 2018) (top) and Cascade D-PRD (bot-
tom) with R50-FPN are compared.

we improve box and mask APs by about 2.0/2.0 (2.1/0.8)
for Res50-PFN (R101-FPN). In addition, based on R50-FPN
we implement the Cascade Mask R-CNN following the im-
plementation (Cai and Vasconcelos 2018). As shown, our
Cascade D-PRD shows the better scores than the Cascade
Mask R-CNN. Fixed part models (i.e. not deformable) also
degrade mAP as shown. We prove that each method is ben-
eficial for improving the mAP scores.

Detailed analysis of DPR and RDA networks: Table
2 shows more ablation study of the main methods. For
more comparison with RDA, we implement a feature fu-
sion method (i.e. Concat). To this end, we first apply a 1x1
conv to reduce the channel number of xp

1 by 1/kP , and
concatenate them along the channel dimension. Then, we
combine the whole xw and concatenated part feature using
one element-wise max unit over each channel. Compared to
(D1), the proposed (D4) achieves box 4.2 and mask 4.0 AP
gains. However, the cost of using our DPR and RDA net-
works is not much for parameters and complexity.

Amount of part deformation: When the IoU score
between a transformed part d̂p and fixed part dp is
lower than σ, we exploit dp instead of d̂p to avoid the
over-deformablity of part models. To find out the best
σ, we implement several Cascade D-PRD with differ-
ent R50/R101/X101-FPN backbones, and evaluate box and
mask APs by varying σ. When σ = 1, this indicates the de-
composed part models are fixed as shown in Fig. 2. d̂p could
be out of the d region when σ = 0.

Figure 4 shows the mAP comparison results of different
Cascade R-DADs. For the box AP, all the detectors show the
best results using σ = 0.5, but each achieves the best mask
using σ = [0.3, 0.4, 0.5], respectively. Note that the maxi-
mum differences of box and mask APs for σ = [0.3, 0.7] is
less than 0.28. Thus, these marginal differences prove that
our detector is not sensitive to σ. Compared to results of us-
ing the fixed part models, we can improve box and mask
AP by about 1.2 and 0.9 points by deforming part boxes in
average. This also highlights that the DPR is key.

Number of part models: In Table 3, we evaluate APs and
speed with different number of parts (kP ) and RDA stages
(l). Decreasing kP boosts the speed slightly, but degrades
box and mask scores. We also evaluate our D-PRD with
more parts (kP = {8, 16}) and stages (l = {4, 5}). The
accuracy gain is marginal, but the speed is reduced largely.
Thus, we opt kP = 4 and l = 3 for our implementation.
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Method Backbone box AP AP50 AP75 APS APM APL mask AP
One-stage detectors

ATSS (Zhang et al. 2020b) ResNet101-FPN 43.6 62.1 47.4 26.1 47.0 53.6 -
IQDET (Ma et al. 2021) ResNet101-FPN 45.1 63.4 49.3 26.7 48.5 56.6 -

CentripetalNet (Dong et al. 2020) ∗ Hourglass-104 48.0 65.1 51.8 29.0 50.4 59.9 40.2
Two-stage detectors

Mask R-CNN w/ SWN (Cai et al. 2020) ResNeXt101 42.5 64.1 46.6 24.8 46.0 53.5 -
Grid R-CNN (Lu et al. 2019) ResNeXt101 43.2 63.0 46.6 25.1 46.5 55.2 -

Dynamic R-CNN (Zhang et al. 2020a) ∗ ResNet101 44.7 63.6 49.1 26.0 47.4 57.2 -
D-PRD (ours) ResNet50-FPN 43.6 63.1 48.1 26.2 46.1 54.0 38.8
D-PRD (ours) ResNet101-FPN 45.3 64.6 49.9 27.2 48.1 56.7 40.0

Cascade detectors
Hybrid Task Cascade (Chen et al. 2019) ResNeXt101-FPN 47.1 63.9 44.7 22.8 43.9 54.6 41.2

HCE Cascade R-CNN (Chen et al. 2020) ?∗ ResNet101-FPN 46.5 65.6 50.6 27.4 49.9 59.4 -
QueryInst (Fang et al. 2021) ResNet101-FPN 47.0 - - - - - 41.7

SCNET (Vu, Haeyong, and Yoo 2021) ResNeXt101-FPN 48.3 - - - - - 42.7
Cascade D-PRD (ours) ResNet50-FPN 46.5 63.9 51.1 28.8 48.5 57.3 40.1
Cascade D-PRD (ours) ResNet101-FPN 48.3 65.7 53.0 29.6 51.0 59.8 41.7
Cascade D-PRD (ours) ResNeXt101-FPN 49.2 66.8 53.9 30.4 51.7 60.9 42.4

Cascade D-PRD (ours) ∗ ResNeXt101-FPN 51.1 69.2 56.0 33.3 53.2 63.5 44.7

Table 4: Comparison results on the COCO19 test-dev data set. ? and ∗ uses multi-scale training/testing. Our detection and
segmentation results can be founded in the MSCOCO evaluation test-dev2019 bbox and test-dev2019 (segm) websites.

Method Backbone AP AP50 AP75

Cascade RCNN R50-FPN 51.8 78.5 57.1
Cascade RCNN R101-FPN 54.2 79.6 59.2

Retina-SWN R50-FPN 53.4 - -
Retina-SWN X101-FPN 56.8 - -
D-PRD (ours) R50-FPN 54.4 78.6 61.0
D-PRD (ours) R101-FPN 56.2 80.0 63.0

Cascade D-PRD (ours) R50-FPN 60.3 80.6 66.3
Cascade D-PRD (ours) R101-FPN 61.1 80.8 67.2
Cascade D-PRD (ours) X101-FPN 60.8 80.8 67.2

Table 5: Comparison of different detectors on VOC2007 test.

Benchmark Results
We evaluate our Cascade D-PRD on the COCO evaluation
server and PASCAL VOC07/12 dataset, and compare our
method with state-of-the-art (SOTA) detectors.

MSCOCO19: We participate in the COCO detection
challenges and report the best results on evaluation server.
Table 4 shows the comparison results with SOTA detectors.
Without bells and whistles, we achieve the best 49.2 box AP
and 42.4 mask AP with the X101-FPN backbone. In addi-
tion, our Cascade D-PRDs with R50-FPN and R101-FPN
show the much better scores than other detectors with the
better backbone even (e.g. Grid R-CNN, HCE, etc). In addi-
tion, we achieve 51.1 box and 44.7 mask APs using multi-
scale testing. As shown in this challenge leaderboards, our
Cascade D-PRD is ranked on the high place. We believe
that more improvement can be achieved by using multi-scale
training or model ensemble. We also provide the accuracy
of D-PRDs. These results are better than Mask R-CNN w/
SWN (Cai et al. 2020).

PASCAL VOC: We use the VOC07/12 datasets for
more comparisons. For training and evaluation, we use the
VOC07/12 trainval sets and VOC07 test set, respectively. In
Table 5, our Cascade D-PRD shows the best AP scores. In
addition, our result overwhelms AP of the Retina-SWN (Cai

Figure 6: Detection results using our Cascade D-PRD with
X101-FPN. Part boxes are colored with orange.

et al. 2020) using the same backbone. Our D-PRDs show the
better AP scores than Retina-SWN with the same backbone.

Qualitative Results: Figure 6 shows the visualization re-
sults. We depict detected whole and part bounding boxes of
each object. As shown, object part regions are learned to be
deformable according to an object category, scale, and pose.
The deformability of the part boxes can improve the robust-
ness against geometric variations. Furthermore, it represents
crucial regions that should be extracted for learning object
part details and global context around the object.

Figure 5 compares the gradient activation maps using G-
CAM (Selvaraju et al. 2017). As shown, our Cascade D-
PRD provides more discriminative and localized gradients
within each object proposal than Cascade Mask R-CNN (Cai
and Vasconcelos 2018).

Conclusion
In this work, we propose a Cascade D-PRD for high qual-
ity of detection and instance segmentation. This is achieved
by the deformable part region network which can transform
decomposed part regions according to the geometric trans-
formation of an object. For learning transformation parame-
ters without extra supervision, we design a deformable part
layer and part model losses. By refining part and whole ob-
ject models iteratively, we can learn the stronger semantic
features. As a result, our Cascade detector overwhelms the
performance of the recent detectors.
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